Sortix nightly manual
This manual documents Sortix nightly, a development build that has not been officially released. You can instead view this document in the latest official manual.
| BN_ADD(3) | Library Functions Manual | BN_ADD(3) | 
NAME
BN_add, BN_uadd,
    BN_sub, BN_usub,
    BN_mul, BN_sqr,
    BN_div, BN_mod,
    BN_nnmod, BN_mod_add,
    BN_mod_add_quick,
    BN_mod_sub,
    BN_mod_sub_quick,
    BN_mod_mul, BN_mod_sqr,
    BN_mod_lshift,
    BN_mod_lshift_quick,
    BN_mod_lshift1,
    BN_mod_lshift1_quick,
    BN_exp, BN_mod_exp,
    BN_gcd — arithmetic
    operations on BIGNUMs
SYNOPSIS
#include
    <openssl/bn.h>
int
  
  BN_add(BIGNUM *r,
    const BIGNUM *a, const BIGNUM
    *b);
int
  
  BN_uadd(BIGNUM *r,
    const BIGNUM *a, const BIGNUM
    *b);
int
  
  BN_sub(BIGNUM *r,
    const BIGNUM *a, const BIGNUM
    *b);
int
  
  BN_usub(BIGNUM *r,
    const BIGNUM *a, const BIGNUM
    *b);
int
  
  BN_mul(BIGNUM *r,
    const BIGNUM *a, const BIGNUM
    *b, BN_CTX *ctx);
int
  
  BN_sqr(BIGNUM *r,
    const BIGNUM *a, BN_CTX
  *ctx);
int
  
  BN_div(BIGNUM *dv,
    BIGNUM *rem, const BIGNUM *a,
    const BIGNUM *d, BN_CTX
  *ctx);
int
  
  BN_mod(BIGNUM *rem,
    const BIGNUM *a, const BIGNUM
    *m, BN_CTX *ctx);
int
  
  BN_nnmod(BIGNUM *r,
    const BIGNUM *a, const BIGNUM
    *m, BN_CTX *ctx);
int
  
  BN_mod_add(BIGNUM *r,
    const BIGNUM *a, const BIGNUM
    *b, const BIGNUM *m, BN_CTX
    *ctx);
int
  
  BN_mod_add_quick(BIGNUM *r,
    const BIGNUM *a, const BIGNUM
    *b, const BIGNUM *m);
int
  
  BN_mod_sub(BIGNUM *r,
    const BIGNUM *a, const BIGNUM
    *b, const BIGNUM *m, BN_CTX
    *ctx);
int
  
  BN_mod_sub_quick(BIGNUM *r,
    const BIGNUM *a, const BIGNUM
    *b, const BIGNUM *m);
int
  
  BN_mod_mul(BIGNUM *r,
    const BIGNUM *a, const BIGNUM
    *b, const BIGNUM *m, BN_CTX
    *ctx);
int
  
  BN_mod_sqr(BIGNUM *r,
    const BIGNUM *a, const BIGNUM
    *m, BN_CTX *ctx);
int
  
  BN_mod_lshift(BIGNUM *r,
    const BIGNUM *a, int n,
    const BIGNUM *m, BN_CTX
  *ctx);
int
  
  BN_mod_lshift_quick(BIGNUM *r,
    const BIGNUM *a, int n,
    const BIGNUM *m);
int
  
  BN_mod_lshift1(BIGNUM *r,
    const BIGNUM *a, const BIGNUM
    *m, BN_CTX *ctx);
int
  
  BN_mod_lshift1_quick(BIGNUM *r,
    const BIGNUM *a, const BIGNUM
    *m);
int
  
  BN_exp(BIGNUM *r,
    const BIGNUM *a, const BIGNUM
    *p, BN_CTX *ctx);
int
  
  BN_mod_exp(BIGNUM *r,
    const BIGNUM *a, const BIGNUM
    *p, const BIGNUM *m, BN_CTX
    *ctx);
int
  
  BN_gcd(BIGNUM *r,
    const BIGNUM *a, const BIGNUM
    *b, BN_CTX *ctx);
DESCRIPTION
BN_add()
    adds a and b and places the
    result in r (r=a+b).
    r may be the same BIGNUM as
    a or b.
BN_uadd()
    adds the absolute values of a and
    b and places the result in r
    (r=|a|+|b|). r may be the same
    BIGNUM as a or
    b.
BN_sub()
    subtracts b from a and places
    the result in r (r=a-b).
    r may be the same BIGNUM as
    a or b.
BN_usub()
    subtracts the absolute value of b from the absolute
    value of a and places the result in
    r (r=|a|-|b|). It requires the
    absolute value of a to be greater than the absolute
    value of b; otherwise it will fail.
    r may be the same BIGNUM as
    a or b.
BN_mul()
    multiplies a and b and places
    the result in r (r=a*b).
    r may be the same BIGNUM as
    a or b. For multiplication by
    powers of 2, use
    BN_lshift(3).
BN_sqr()
    takes the square of a and places the result in
    r (r=a^2).
    r and a may be the same
    BIGNUM. This function is faster than
    BN_mul(r,
    a, a).
BN_div()
    divides a by d and places the
    result in dv and the remainder in
    rem (dv=a/d,
    rem=a%d). If the flag
    BN_FLG_CONSTTIME is set on a
    or d, it operates in constant time. Either of
    dv and rem may be
    NULL, in which case the respective value is not
    returned. The result is rounded towards zero; thus if
    a is negative, the remainder will be zero or negative.
    For division by powers of 2, use
    BN_rshift(3).
BN_mod()
    corresponds to BN_div() with
    dv set to NULL. It is
    implemented as a macro.
BN_nnmod()
    reduces a modulo m and places
    the non-negative remainder in r.
BN_mod_add()
    adds a to b modulo
    m and places the non-negative result in
    r.
BN_mod_add_quick()
    is a variant of BN_mod_add() that requires
    a and b to both be non-negative
    and smaller than m. If any of these constraints are
    violated, it silently produces wrong results.
BN_mod_sub()
    subtracts b from a modulo
    m and places the non-negative result in
    r.
BN_mod_sub_quick()
    is a variant of BN_mod_sub() that requires
    a and b to both be non-negative
    and smaller than m. If any of these constraints are
    violated, it silently produces wrong results.
BN_mod_mul()
    multiplies a by b and finds the
    non-negative remainder respective to modulus m
    (r=(a*b)%m). r may be the same
    BIGNUM as a or
    b. For a more efficient algorithm for repeated
    computations using the same modulus, see
    BN_mod_mul_montgomery(3).
BN_mod_sqr()
    takes the square of a modulo m
    and places the result in r.
BN_mod_lshift()
    shifts a left by n bits, reduces
    the result modulo m, and places the non-negative
    remainder in r (r=a*2^n mod
    m).
BN_mod_lshift1()
    shifts a left by one bit, reduces the result modulo
    m, and places the non-negative remainder in
    r (r=a*2 mod m).
BN_mod_lshift_quick()
    and
    BN_mod_lshift1_quick()
    are variants of BN_mod_lshift() and
    BN_mod_lshift1(), respectively, that require
    a to be non-negative and less than
    m. If either of these constraints is violated, they
    sometimes fail and sometimes silently produce wrong results.
BN_exp()
    raises a to the p-th power and
    places the result in r
    (r=a^p). This function is faster than repeated
    applications of BN_mul().
BN_mod_exp()
    computes a to the p-th power
    modulo m (r=(a^p)%m). If the
    flag BN_FLG_CONSTTIME is set on
    p, it operates in constant time. This function uses
    less time and space than BN_exp().
BN_gcd()
    computes the greatest common divisor of a and
    b and places the result in r.
    r may be the same BIGNUM as
    a or b.
For all functions, ctx is a previously allocated BN_CTX used for temporary variables; see BN_CTX_new(3).
Unless noted otherwise, the result BIGNUM must be different from the arguments.
RETURN VALUES
For all functions, 1 is returned for success, 0 on error. The return value should always be checked, for example:
if (!BN_add(r,a,b)) goto
  err;The error codes can be obtained by ERR_get_error(3).
SEE ALSO
BN_add_word(3), BN_CTX_new(3), BN_new(3), BN_set_bit(3), BN_set_flags(3), BN_set_negative(3)
HISTORY
BN_add(),
    BN_sub(), BN_mul(),
    BN_sqr(), BN_div(),
    BN_mod(), BN_mod_mul(),
    BN_mod_exp(), and BN_gcd()
    first appeared in SSLeay 0.5.1. BN_exp() first
    appeared in SSLeay 0.9.0. All these functions have been available since
    OpenBSD 2.4.
BN_uadd(),
    BN_usub(), and the ctx
    argument to BN_mul() first appeared in SSLeay 0.9.1
    and have been available since OpenBSD 2.6.
BN_nnmod(),
    BN_mod_add(),
    BN_mod_add_quick(),
    BN_mod_sub(),
    BN_mod_sub_quick(),
    BN_mod_sqr(),
    BN_mod_lshift(),
    BN_mod_lshift_quick(),
    BN_mod_lshift1(), and
    BN_mod_lshift1_quick() first appeared in OpenSSL
    0.9.7 and have been available since OpenBSD 3.2.
BUGS
Even if the BN_FLG_CONSTTIME flag is set
    on a or b,
    BN_gcd() neither fails nor operates in constant
    time, potentially allowing timing side-channel attacks.
Even if the BN_FLG_CONSTTIME flag is set
    on p, if the modulus m is even,
    BN_mod_exp() does not operate in constant time,
    potentially allowing timing side-channel attacks.
If BN_FLG_CONSTTIME is set on
    p, BN_exp() fails instead of
    operating in constant time.
| April 27, 2023 | Sortix 1.1.0-dev | 
