sortix-mirror/sortix/x86/memorymanagement.cpp

201 lines
6.0 KiB
C++

/******************************************************************************
COPYRIGHT(C) JONAS 'SORTIE' TERMANSEN 2011.
This file is part of Sortix.
Sortix is free software: you can redistribute it and/or modify it under the
terms of the GNU General Public License as published by the Free Software
Foundation, either version 3 of the License, or (at your option) any later
version.
Sortix is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
details.
You should have received a copy of the GNU General Public License along
with Sortix. If not, see <http://www.gnu.org/licenses/>.
memorymanagement.cpp
Handles memory for the x86 architecture.
******************************************************************************/
#include "platform.h"
#include <libmaxsi/memory.h>
#include "multiboot.h"
#include "panic.h"
#include "../memorymanagement.h"
#include "x86-family/memorymanagement.h"
namespace Sortix
{
namespace Page
{
extern size_t stackused;
extern size_t stacklength;
void ExtendStack();
}
namespace Memory
{
extern addr_t currentdir;
void InitCPU()
{
PML* const BOOTPML2 = (PML* const) 0x01000UL;
PML* const BOOTPML1 = (PML* const) 0x02000UL;
PML* const FORKPML1 = (PML* const) 0x03000UL;
PML* const IDENPML1 = (PML* const) 0x04000UL;
// Initialize the memory structures with zeroes.
Maxsi::Memory::Set((PML* const) 0x01000UL, 0, 0x6000UL);
// Identity map the first 4 MiB.
addr_t flags = PML_PRESENT | PML_WRITABLE;
BOOTPML2->entry[0] = ((addr_t) IDENPML1) | flags;
for ( size_t i = 0; i < ENTRIES; i++ )
{
IDENPML1->entry[i] = (i * 4096UL) | flags;
}
// Next order of business is to map the virtual memory structures
// to the pre-defined locations in the virtual address space.
// Fractal map the PML1s.
BOOTPML2->entry[1023] = (addr_t) BOOTPML2 | flags;
// Fractal map the PML2s.
BOOTPML2->entry[1022] = (addr_t) BOOTPML1 | flags | PML_FORK;
BOOTPML1->entry[1023] = (addr_t) BOOTPML2 | flags;
// Add some predefined room for forking address spaces.
BOOTPML1->entry[0] = 0; // (addr_t) FORKPML1 | flags | PML_FORK;
// The virtual memory structures are now available on the predefined
// locations. This means the virtual memory code is bootstrapped. Of
// course, we still have no physical page allocator, so that's the
// next step.
PML* const PHYSPML1 = (PML* const) 0x05000UL;
PML* const PHYSPML0 = (PML* const) 0x06000UL;
BOOTPML2->entry[1021] = (addr_t) PHYSPML1 | flags;
PHYSPML1->entry[0] = (addr_t) PHYSPML0 | flags;
// Alright, enable virtual memory!
SwitchAddressSpace((addr_t) BOOTPML2);
size_t cr0;
asm volatile("mov %%cr0, %0": "=r"(cr0));
cr0 |= 0x80000000UL; /* Enable paging! */
asm volatile("mov %0, %%cr0":: "r"(cr0));
Page::stackused = 0;
Page::stacklength = 4096UL / sizeof(addr_t);
// The physical memory allocator should now be ready for use. Next
// up, the calling function will fill up the physical allocator with
// plenty of nice physical pages. (see Page::InitPushRegion)
}
// Please note that even if this function exists, you should still clean
// up the address space of a process _before_ calling
// DestroyAddressSpace. This is just a hack because it currently is
// impossible to clean up PLM1's using the MM api!
// ---
// TODO: This function is duplicated in {x86,x64}/memorymanagement.cpp!
// ---
void RecursiveFreeUserspacePages(size_t level, size_t offset)
{
PML* pml = PMLS[level] + offset;
for ( size_t i = 0; i < ENTRIES; i++ )
{
if ( !(pml->entry[i] & PML_PRESENT) ) { continue; }
if ( !(pml->entry[i] & PML_USERSPACE) ) { continue; }
if ( !(pml->entry[i] & PML_FORK) ) { continue; }
if ( level > 1 ) { RecursiveFreeUserspacePages(level-1, offset * ENTRIES + i); }
addr_t addr = pml->entry[i] & PML_ADDRESS;
pml->entry[i] = 0;
Page::Put(addr);
}
}
void DestroyAddressSpace()
{
// First let's do the safe part. Garbage collect any PML1/0's left
// behind by user-space. These are completely safe to delete.
RecursiveFreeUserspacePages(TOPPMLLEVEL, 0);
// Let's destroy the current address space! Oh wait. If we do that,
// hell will break loose half-way when we start unmapping this piece
// of code.
// Instead, let's just mark the relevant pages as unused and switch
// to another address space as fast as humanely possible. Any memory
// allocation could potentially modify the current paging structures
// and overwrite their contents causing a tripple-fault!
// Make sure Page::Put does NOT cause any Page::Get's internally!
const size_t NUM_PAGES = 2;
size_t pagestackfree = Page::stacklength - Page::stackused;
if ( pagestackfree < NUM_PAGES ) { Page::ExtendStack(); }
addr_t fractal1 = PMLS[2]->entry[1022];
Page::Put(fractal1 & PML_ADDRESS);
Page::Put(currentdir & PML_ADDRESS);
// Switch to the address space from when the world was originally
// created. It should contain the kernel, the whole kernel, and
// nothing but the kernel.
PML* const BOOTPML2 = (PML* const) 0x01000UL;
SwitchAddressSpace((addr_t) BOOTPML2);
}
const size_t KERNEL_STACK_SIZE = 256UL * 1024UL;
const addr_t KERNEL_STACK_END = 0x80001000UL;
const addr_t KERNEL_STACK_START = KERNEL_STACK_END + KERNEL_STACK_SIZE;
addr_t INITRD = KERNEL_STACK_START;
size_t initrdsize = 0;
const addr_t HEAPUPPER = 0xFF400000UL;
addr_t GetInitRD()
{
return INITRD;
}
size_t GetInitRDSize()
{
return initrdsize;
}
void RegisterInitRDSize(size_t size)
{
initrdsize = size;
}
addr_t GetHeapLower()
{
return Page::AlignUp(INITRD + initrdsize);
}
addr_t GetHeapUpper()
{
return HEAPUPPER;
}
addr_t GetKernelStack()
{
return KERNEL_STACK_START;
}
size_t GetKernelStackSize()
{
return KERNEL_STACK_SIZE;
}
}
}