/****************************************************************************** COPYRIGHT(C) JONAS 'SORTIE' TERMANSEN 2011. This file is part of Sortix. Sortix is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Sortix is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Sortix. If not, see . memorymanagement.cpp Handles memory for the x86 architecture. ******************************************************************************/ #include "platform.h" #include #include "multiboot.h" #include "panic.h" #include "../memorymanagement.h" #include "x86-family/memorymanagement.h" namespace Sortix { namespace Page { extern size_t stackused; extern size_t stacklength; void ExtendStack(); } namespace Memory { extern addr_t currentdir; void InitCPU() { PML* const BOOTPML2 = (PML* const) 0x01000UL; PML* const BOOTPML1 = (PML* const) 0x02000UL; PML* const FORKPML1 = (PML* const) 0x03000UL; PML* const IDENPML1 = (PML* const) 0x04000UL; // Initialize the memory structures with zeroes. Maxsi::Memory::Set((PML* const) 0x01000UL, 0, 0x6000UL); // Identity map the first 4 MiB. addr_t flags = PML_PRESENT | PML_WRITABLE; BOOTPML2->entry[0] = ((addr_t) IDENPML1) | flags; for ( size_t i = 0; i < ENTRIES; i++ ) { IDENPML1->entry[i] = (i * 4096UL) | flags; } // Next order of business is to map the virtual memory structures // to the pre-defined locations in the virtual address space. // Fractal map the PML1s. BOOTPML2->entry[1023] = (addr_t) BOOTPML2 | flags; // Fractal map the PML2s. BOOTPML2->entry[1022] = (addr_t) BOOTPML1 | flags | PML_FORK; BOOTPML1->entry[1023] = (addr_t) BOOTPML2 | flags; // Add some predefined room for forking address spaces. BOOTPML1->entry[0] = 0; // (addr_t) FORKPML1 | flags | PML_FORK; // The virtual memory structures are now available on the predefined // locations. This means the virtual memory code is bootstrapped. Of // course, we still have no physical page allocator, so that's the // next step. PML* const PHYSPML1 = (PML* const) 0x05000UL; PML* const PHYSPML0 = (PML* const) 0x06000UL; BOOTPML2->entry[1021] = (addr_t) PHYSPML1 | flags; PHYSPML1->entry[0] = (addr_t) PHYSPML0 | flags; // Alright, enable virtual memory! SwitchAddressSpace((addr_t) BOOTPML2); size_t cr0; asm volatile("mov %%cr0, %0": "=r"(cr0)); cr0 |= 0x80000000UL; /* Enable paging! */ asm volatile("mov %0, %%cr0":: "r"(cr0)); Page::stackused = 0; Page::stacklength = 4096UL / sizeof(addr_t); // The physical memory allocator should now be ready for use. Next // up, the calling function will fill up the physical allocator with // plenty of nice physical pages. (see Page::InitPushRegion) } // Please note that even if this function exists, you should still clean // up the address space of a process _before_ calling // DestroyAddressSpace. This is just a hack because it currently is // impossible to clean up PLM1's using the MM api! // --- // TODO: This function is duplicated in {x86,x64}/memorymanagement.cpp! // --- void RecursiveFreeUserspacePages(size_t level, size_t offset) { PML* pml = PMLS[level] + offset; for ( size_t i = 0; i < ENTRIES; i++ ) { if ( !(pml->entry[i] & PML_PRESENT) ) { continue; } if ( !(pml->entry[i] & PML_USERSPACE) ) { continue; } if ( !(pml->entry[i] & PML_FORK) ) { continue; } if ( level > 1 ) { RecursiveFreeUserspacePages(level-1, offset * ENTRIES + i); } addr_t addr = pml->entry[i] & PML_ADDRESS; pml->entry[i] = 0; Page::Put(addr); } } void DestroyAddressSpace() { // First let's do the safe part. Garbage collect any PML1/0's left // behind by user-space. These are completely safe to delete. RecursiveFreeUserspacePages(TOPPMLLEVEL, 0); // Let's destroy the current address space! Oh wait. If we do that, // hell will break loose half-way when we start unmapping this piece // of code. // Instead, let's just mark the relevant pages as unused and switch // to another address space as fast as humanely possible. Any memory // allocation could potentially modify the current paging structures // and overwrite their contents causing a tripple-fault! // Make sure Page::Put does NOT cause any Page::Get's internally! const size_t NUM_PAGES = 2; size_t pagestackfree = Page::stacklength - Page::stackused; if ( pagestackfree < NUM_PAGES ) { Page::ExtendStack(); } addr_t fractal1 = PMLS[2]->entry[1022]; Page::Put(fractal1 & PML_ADDRESS); Page::Put(currentdir & PML_ADDRESS); // Switch to the address space from when the world was originally // created. It should contain the kernel, the whole kernel, and // nothing but the kernel. PML* const BOOTPML2 = (PML* const) 0x01000UL; SwitchAddressSpace((addr_t) BOOTPML2); } const size_t KERNEL_STACK_SIZE = 256UL * 1024UL; const addr_t KERNEL_STACK_END = 0x80001000UL; const addr_t KERNEL_STACK_START = KERNEL_STACK_END + KERNEL_STACK_SIZE; addr_t INITRD = KERNEL_STACK_START; size_t initrdsize = 0; const addr_t HEAPUPPER = 0xFF400000UL; addr_t GetInitRD() { return INITRD; } size_t GetInitRDSize() { return initrdsize; } void RegisterInitRDSize(size_t size) { initrdsize = size; } addr_t GetHeapLower() { return Page::AlignUp(INITRD + initrdsize); } addr_t GetHeapUpper() { return HEAPUPPER; } addr_t GetKernelStack() { return KERNEL_STACK_START; } size_t GetKernelStackSize() { return KERNEL_STACK_SIZE; } } }