sortix-mirror/sortix/x86-family/memorymanagement.cpp
Jonas 'Sortie' Termansen 36b01eb2d3 Fixed the horrible 'nofoo' bug!
When compiled with gcc 4.6.1, 32-bit Sortix would triple fault during
early boot: When the TLB is being flushed, somehow a garbage value had
sneaked into Sortix::Memory::currentdir, and a non-page aligned (and
garbage) page directory is loaded. (Triple fault, here we come!)

However, adding a volatile addr_t foo after the currentdir variable
actually caused the system to boot correctly - the garbage was written
into that variable instead. To debug the problem, I set the foo value
to 0: as long as !foo (hence the name nofoo) everything was alright.

After closer examination I found that the initrd open code wrote to a
pointer supplied by kernel.cpp. The element pointed to was on the
stack. Worse, its address was the same as currentdir (now foo).

Indeed, the stack had gone into the kernel's data segment!

Turns out that this gcc configuration stores variables in the data
segment in the reverse order they are defined in, whereas previous
compilers did the opposite. The hack used to set up the stack during
early boot relied on this (now obviously incorrect) fact.

In effect, the stack was initialized to the end of the stack, not
the start of it: completely ignoring all the nice stack space
allocated in kernel.cpp.

I did not see that one coming.
2011-12-25 03:41:59 +01:00

629 lines
17 KiB
C++

/******************************************************************************
COPYRIGHT(C) JONAS 'SORTIE' TERMANSEN 2011.
This file is part of Sortix.
Sortix is free software: you can redistribute it and/or modify it under the
terms of the GNU General Public License as published by the Free Software
Foundation, either version 3 of the License, or (at your option) any later
version.
Sortix is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
details.
You should have received a copy of the GNU General Public License along
with Sortix. If not, see <http://www.gnu.org/licenses/>.
memorymanagement.cpp
Handles memory for the x86 family of architectures.
******************************************************************************/
#include "platform.h"
#include <libmaxsi/error.h>
#include <libmaxsi/memory.h>
#include "multiboot.h"
#include "panic.h"
#include "../memorymanagement.h"
#include "memorymanagement.h"
#include "syscall.h"
using namespace Maxsi;
namespace Sortix
{
extern size_t end;
namespace Page
{
void InitPushRegion(addr_t position, size_t length);
size_t pagesnotonstack;
size_t stackused;
size_t stacklength;
size_t totalmem;
}
namespace Memory
{
addr_t currentdir;
void InitCPU();
void AllocateKernelPMLs();
int SysMemStat(size_t* memused, size_t* memtotal);
void Init(multiboot_info_t* bootinfo)
{
const size_t MAXKERNELEND = 0x400000UL; /* 4 MiB */
addr_t kernelend = Page::AlignUp((addr_t) &end);
if ( MAXKERNELEND < kernelend )
{
Log::PrintF("Warning: The kernel is too big! It ends at 0x%zx, "
"but the highest ending address supported is 0x%zx. "
"The system may not boot correctly.\n", kernelend,
MAXKERNELEND);
}
Page::pagesnotonstack = 0;
Page::totalmem = 0;
if ( !( bootinfo->flags & MULTIBOOT_INFO_MEM_MAP ) )
{
Panic("memorymanagement.cpp: The memory map flag was't set in "
"the multiboot structure. Are your bootloader multiboot "
"specification compliant?");
}
// Initialize CPU-specific things.
InitCPU();
typedef const multiboot_memory_map_t* mmap_t;
// Loop over every detected memory region.
for (
mmap_t mmap = (mmap_t) bootinfo->mmap_addr;
(addr_t) mmap < bootinfo->mmap_addr + bootinfo->mmap_length;
mmap = (mmap_t) ((addr_t) mmap + mmap->size + sizeof(mmap->size))
)
{
// Check that we can use this kind of RAM.
if ( mmap->type != 1 ) { continue; }
// The kernel's code may split this memory area into multiple pieces.
addr_t base = (addr_t) mmap->addr;
size_t length = Page::AlignDown(mmap->len);
#ifdef PLATFORM_X86
// Figure out if the memory area is addressable (are our pointers big enough?)
if ( 0xFFFFFFFFULL < mmap->addr ) { continue; }
if ( 0xFFFFFFFFULL < mmap->addr + mmap->len ) { length = 0x100000000ULL - mmap->addr; }
#endif
// Count the amount of usable RAM (even if reserved for kernel).
Page::totalmem += length;
// Give all the physical memory to the physical memory allocator
// but make sure not to give it things we already use.
addr_t regionstart = mmap->addr;
addr_t regionend = mmap->addr + mmap->len;
addr_t processed = regionstart;
while ( processed < regionend )
{
addr_t lowest = processed;
addr_t highest = regionend;
// Don't allocate the kernel.
if ( lowest < kernelend ) { processed = kernelend; continue; }
// Don't give any of our modules to the physical page
// allocator, we'll need them.
bool continuing = false;
uint32_t* modules = (uint32_t*) bootinfo->mods_addr;
for ( uint32_t i = 0; i < bootinfo->mods_count; i++ )
{
size_t modsize = (size_t) (modules[2*i+1] - modules[2*i+0]);
addr_t modstart = (addr_t) modules[2*i+0];
addr_t modend = modstart + modsize;
if ( modstart <= processed && processed < modend )
{
processed = modend;
continuing = true;
break;
}
if ( lowest <= modstart && modstart < highest )
{
highest = modstart;
}
}
if ( continuing ) { continue; }
if ( highest <= lowest ) { break; }
// Now that we have a continious area not used by anything,
// let's forward it to the physical page allocator.
lowest = Page::AlignUp(lowest);
highest = Page::AlignUp(highest);
size_t size = highest - lowest;
Page::InitPushRegion(lowest, size);
processed = highest;
}
}
// If the physical allocator couldn't handle the vast amount of
// physical pages, it may decide to drop some. This shouldn't happen
// until the pebibyte era of RAM.
if ( 0 < Page::pagesnotonstack )
{
Log::PrintF("%zu bytes of RAM aren't used due to technical "
"restrictions.\n", Page::pagesnotonstack * 0x1000UL);
}
// Finish allocating the top level PMLs for the kernels use.
AllocateKernelPMLs();
Syscall::Register(SYSCALL_MEMSTAT, (void*) SysMemStat);
}
void Statistics(size_t* amountused, size_t* totalmem)
{
size_t memfree = Page::stackused << 12UL;
size_t memused = Page::totalmem - memfree;
if ( amountused ) { *amountused = memused; }
if ( totalmem ) { *totalmem = Page::totalmem; }
}
int SysMemStat(size_t* memused, size_t* memtotal)
{
size_t used;
size_t total;
Statistics(&used, &total);
// TODO: Check if legal user-space buffers!
*memused = used;
*memtotal = total;
return 0;
}
// Prepare the non-forkable kernel PMLs such that forking the kernel
// address space will always keep the kernel mapped.
void AllocateKernelPMLs()
{
const addr_t flags = PML_PRESENT | PML_WRITABLE;
PML* const pml = PMLS[TOPPMLLEVEL];
size_t start = ENTRIES / 2;
size_t end = ENTRIES;
for ( size_t i = start; i < end; i++ )
{
if ( pml->entry[i] & PML_PRESENT ) { continue; }
addr_t page = Page::Get();
if ( !page ) { Panic("out of memory allocating boot PMLs"); }
pml->entry[i] = page | flags;
// Invalidate the new PML and reset it to zeroes.
addr_t pmladdr = (addr_t) (PMLS[TOPPMLLEVEL-1] + i);
InvalidatePage(pmladdr);
Maxsi::Memory::Set((void*) pmladdr, 0, sizeof(PML));
}
}
}
namespace Page
{
void ExtendStack()
{
// This call will always succeed, if it didn't, then the stack
// wouldn't be full, and thus this function won't be called.
addr_t page = Get();
// This call will also succeed, since there are plenty of physical
// pages available and it might need some.
if ( !Memory::MapKernel(page, (addr_t) (STACK + stacklength)) )
{
Panic("Unable to extend page stack, which should have worked");
}
// TODO: This may not be needed during the boot process!
//Memory::InvalidatePage((addr_t) (STACK + stacklength));
stacklength += 4096UL / sizeof(addr_t);
}
void InitPushRegion(addr_t position, size_t length)
{
// Align our entries on page boundaries.
addr_t newposition = Page::AlignUp(position);
length = Page::AlignDown((position + length) - newposition);
position = newposition;
while ( length )
{
if ( unlikely(stackused == stacklength) )
{
if ( stackused == MAXSTACKLENGTH )
{
pagesnotonstack += length / 4096UL;
return;
}
ExtendStack();
}
STACK[stackused++] = position;
length -= 4096UL;
position += 4096UL;
}
}
addr_t Get()
{
if ( unlikely(stackused == 0) ) { Error::Set(ENOMEM); return 0; }
return STACK[--stackused];
}
void Put(addr_t page)
{
ASSERT(stackused < MAXSTACKLENGTH);
STACK[stackused++] = page;
}
}
namespace Memory
{
void InvalidatePage(addr_t /*addr*/)
{
// TODO: Actually just call the instruction.
Flush();
}
// Flushes the Translation Lookaside Buffer (TLB).
void Flush()
{
asm volatile("mov %0, %%cr3":: "r"(currentdir));
}
addr_t SwitchAddressSpace(addr_t addrspace)
{
if ( currentdir != Page::AlignDown(currentdir) )
{
PanicF("Attempted to switch to address space 0x%zx, but it "
"wasn't page aligned!", currentdir);
}
// Don't switch if we are already there.
if ( addrspace == currentdir ) { return currentdir; }
if ( addrspace & 0xFFFUL ) { PanicF("addrspace 0x%zx was not page-aligned!", addrspace); }
addr_t previous = currentdir;
// Switch and flush the TLB.
asm volatile("mov %0, %%cr3":: "r"(addrspace));
currentdir = addrspace;
return previous;
}
bool MapRangeKernel(addr_t where, size_t bytes)
{
for ( addr_t page = where; page < where + bytes; page += 4096UL )
{
addr_t physicalpage = Page::Get();
if ( physicalpage == 0 )
{
while ( where < page )
{
page -= 4096UL;
physicalpage = UnmapKernel(page);
Page::Put(physicalpage);
}
return false;
}
MapKernel(physicalpage, page);
}
return true;
}
void UnmapRangeKernel(addr_t where, size_t bytes)
{
for ( addr_t page = where; page < where + bytes; page += 4096UL )
{
addr_t physicalpage = UnmapKernel(page);
Page::Put(physicalpage);
}
}
bool MapRangeUser(addr_t where, size_t bytes)
{
for ( addr_t page = where; page < where + bytes; page += 4096UL )
{
addr_t physicalpage = Page::Get();
if ( physicalpage == 0 || !MapUser(physicalpage, page) )
{
while ( where < page )
{
page -= 4096UL;
physicalpage = UnmapUser(page);
Page::Put(physicalpage);
}
return false;
}
}
return true;
}
void UnmapRangeUser(addr_t where, size_t bytes)
{
for ( addr_t page = where; page < where + bytes; page += 4096UL )
{
addr_t physicalpage = UnmapUser(page);
Page::Put(physicalpage);
}
}
template <bool userspace, bool invalidate>
bool Map(addr_t physical, addr_t mapto)
{
const addr_t userflags = userspace ? (PML_USERSPACE | PML_FORK) : 0;
const addr_t flags = userflags | PML_PRESENT | PML_WRITABLE;
// Translate the virtual address into PML indexes.
const size_t MASK = (1<<TRANSBITS)-1;
size_t pmlchildid[TOPPMLLEVEL + 1];
for ( size_t i = 1; i <= TOPPMLLEVEL; i++ )
{
pmlchildid[i] = (mapto >> (12+(i-1)*TRANSBITS)) & MASK;
}
// For each PML level, make sure it exists, and that we may use it.
size_t offset = 0;
for ( size_t i = TOPPMLLEVEL; i > 1; i-- )
{
size_t childid = pmlchildid[i];
PML* pml = PMLS[i] + offset;
addr_t& entry = pml->entry[childid];
// Find the index of the next PML in the fractal mapped memory.
size_t childoffset = offset * ENTRIES + childid;
if ( !(entry & PML_PRESENT) )
{
// TODO: Possible memory leak when page allocation fails.
addr_t page = Page::Get();
if ( page == 0 ) { return false; }
entry = page | flags;
// Invalidate the new PML and reset it to zeroes.
addr_t pmladdr = (addr_t) (PMLS[i-1] + childoffset);
InvalidatePage(pmladdr);
Maxsi::Memory::Set((void*) pmladdr, 0, sizeof(PML));
}
else if ( userspace && !(entry & PML_USERSPACE) )
{
PanicF("attempted to map physical page %p to virtual page "
"%p with userspace permissions, but the virtual page "
"wasn't in an userspace PML[%zu]. This is a bug in the "
"code calling this function", physical, mapto, i-1);
}
offset = childoffset;
}
// Actually map the physical page to the virtual page.
(PMLS[1] + offset)->entry[pmlchildid[1]] = physical | flags;
if ( invalidate )
{
InvalidatePage(mapto);
}
return true;
}
template <bool userspace, bool invalidate>
addr_t Unmap(addr_t mapto)
{
// Translate the virtual address into PML indexes.
const size_t MASK = (1<<TRANSBITS)-1;
size_t pmlchildid[TOPPMLLEVEL + 1];
for ( size_t i = 1; i <= TOPPMLLEVEL; i++ )
{
pmlchildid[i] = (mapto >> (12+(i-1)*TRANSBITS)) & MASK;
}
// For each PML level, make sure it exists, and that it belongs to
// user-space.
size_t offset = 0;
for ( size_t i = TOPPMLLEVEL; i > 1; i-- )
{
size_t childid = pmlchildid[i];
PML* pml = PMLS[i] + offset;
addr_t& entry = pml->entry[childid];
if ( !(entry & PML_PRESENT) )
{
PanicF("attempted to unmap virtual page %p with userspace, "
" but the virtual page wasn't mapped. This is a bug "
"in the code calling this function", mapto);
}
else if ( userspace && !(entry & PML_USERSPACE) )
{
PanicF("attempted to unmap virtual page %p it wasn't in an "
"userspace PML[%zu]. This is a bug in the code "
"calling this function", mapto, i-1);
}
// Find the index of the next PML in the fractal mapped memory.
offset = offset * ENTRIES + childid;
}
addr_t& entry = (PMLS[1] + offset)->entry[pmlchildid[1]];
addr_t result = entry & PML_ADDRESS;
entry = 0;
// TODO: If all the entries in PML[N] are not-present, then who
// unmaps its entry from PML[N-1]?
if ( invalidate )
{
Flush();
}
return result;
}
bool MapKernel(addr_t physical, addr_t mapto)
{
return Map<false, false>(physical, mapto);
}
bool MapUser(addr_t physical, addr_t mapto)
{
return Map<true, false>(physical, mapto);
}
addr_t UnmapKernel(addr_t mapto)
{
return Unmap<false, false>(mapto);
}
addr_t UnmapUser(addr_t mapto)
{
return Unmap<true, false>(mapto);
}
// Create an exact copy of the current address space.
// TODO: Copying every frame is endlessly useless in many uses. It'd be
// nice to upgrade this to a copy-on-write algorithm.
addr_t Fork()
{
addr_t newtoppmladdr = Page::Get();
if ( newtoppmladdr == 0 ) { return 0; }
// This is either bad code or very clever code and probably is both.
size_t positionstack[TOPPMLLEVEL+1];
positionstack[TOPPMLLEVEL] = 0;
size_t level = TOPPMLLEVEL;
size_t pmloffset = 0;
bool failure = false;
// This call always succeeds.
MapKernel(newtoppmladdr, (addr_t) (FORKPML + level));
InvalidatePage((addr_t) (FORKPML + level));
// Recurse over the PMLs and fork what should be forked.
while ( positionstack[TOPPMLLEVEL] < ENTRIES )
{
const size_t pos = positionstack[level];
if ( pos == ENTRIES )
{
(positionstack[++level])++;
pmloffset /= ENTRIES;
continue;
}
addr_t entry = (PMLS[level] + pmloffset)->entry[pos];
// If the entry should be forked, fork it!
if ( (entry & PML_FORK) && (entry & PML_PRESENT) )
{
// Pop the physical address of somewhere unused.
addr_t phys = Page::Get();
if ( unlikely(phys == 0) )
{
// Oh no. Out of memory! We'll have to undo everything
// we just did. Argh!
failure = true;
break;
}
// Map the destination page.
addr_t destaddr = (addr_t) (FORKPML + level-1);
MapKernel(phys, destaddr);
InvalidatePage(destaddr);
// Set its entry in the owner.
addr_t flags = entry & PML_FLAGS;
(FORKPML + level)->entry[pos] = phys | flags;
if ( level == 1 )
{
size_t offset = pmloffset * ENTRIES + pos;
// Determine the source page's address.
const void* src = (const void*) (offset * 4096UL);
// Determine the destination page's address.
void* dest = (void*) (FORKPML + level - 1);
Maxsi::Memory::Copy(dest, src, sizeof(PML));
}
else
{
// Fork the PML recursively!
pmloffset = pmloffset * ENTRIES + pos;
positionstack[--level] = 0;
continue;
}
}
// If this entry should be linked, link it.
else
{
FORKPML[level].entry[pos] = entry;
}
positionstack[level]++;
}
if ( !failure )
{
// Now, the new top pml needs to have its fractal memory fixed.
const addr_t flags = PML_PRESENT | PML_WRITABLE;
addr_t mapto;
addr_t childaddr;
(FORKPML + TOPPMLLEVEL)->entry[ENTRIES-1] = newtoppmladdr | flags;
childaddr = (FORKPML + TOPPMLLEVEL)->entry[ENTRIES-2] & PML_ADDRESS;
for ( size_t i = TOPPMLLEVEL-1; i > 0; i-- )
{
mapto = (addr_t) (FORKPML + i);
MapKernel(childaddr, mapto);
InvalidatePage(mapto);
(FORKPML + i)->entry[ENTRIES-1] = newtoppmladdr | flags;
childaddr = (FORKPML + i)->entry[ENTRIES-2] & PML_ADDRESS;
}
return newtoppmladdr;
}
// The fork failed, so'll have to clean up the new address space and
// free all the pages we forked so far. It'd be nice to detect that
// this would happen early on, but it seems to impractical or
// inefficient. Let's just do the dirty work and clean up.
// TODO: Fix this error condition by deleting the new pages.
Panic("Out of memory during fork. This isn't supported yet.");
return 0;
}
}
}