sortix-mirror/sortix/x86-family/memorymanagement.cpp

542 lines
14 KiB
C++

/******************************************************************************
COPYRIGHT(C) JONAS 'SORTIE' TERMANSEN 2011.
This file is part of Sortix.
Sortix is free software: you can redistribute it and/or modify it under the
terms of the GNU General Public License as published by the Free Software
Foundation, either version 3 of the License, or (at your option) any later
version.
Sortix is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
details.
You should have received a copy of the GNU General Public License along
with Sortix. If not, see <http://www.gnu.org/licenses/>.
memorymanagement.cpp
Handles memory for the x86 family of architectures.
******************************************************************************/
#include "platform.h"
#include <libmaxsi/memory.h>
#include "multiboot.h"
#include "panic.h"
#include "../memorymanagement.h"
#include "memorymanagement.h"
namespace Sortix
{
const addr_t KERNELEND = 0x200000UL;
namespace Page
{
void InitPushRegion(addr_t position, size_t length);
size_t pagesnotonstack;
size_t stackused;
size_t stacklength;
}
namespace Memory
{
addr_t currentdir;
void InitCPU();
void AllocateKernelPMLs();
void Init(multiboot_info_t* bootinfo)
{
Page::pagesnotonstack = 0;
if ( !( bootinfo->flags & MULTIBOOT_INFO_MEM_MAP ) )
{
Panic("memorymanagement.cpp: The memory map flag was't set in "
"the multiboot structure. Are your bootloader multiboot "
"specification compliant?");
}
// Initialize CPU-specific things.
InitCPU();
typedef const multiboot_memory_map_t* mmap_t;
// Loop over every detected memory region.
for (
mmap_t mmap = (mmap_t) bootinfo->mmap_addr;
(addr_t) mmap < bootinfo->mmap_addr + bootinfo->mmap_length;
mmap = (mmap_t) ((addr_t) mmap + mmap->size + sizeof(mmap->size))
)
{
// Check that we can use this kind of RAM.
if ( mmap->type != 1 ) { continue; }
// The kernel's code may split this memory area into multiple pieces.
addr_t base = (addr_t) mmap->addr;
size_t length = mmap->len;
#ifdef PLATFORM_X86
// Figure out if the memory area is addressable (are our pointers big enough?)
if ( 0xFFFFFFFFULL < mmap->addr ) { continue; }
if ( 0xFFFFFFFFULL < mmap->addr + mmap->len ) { length = 0x100000000ULL - mmap->addr; }
#endif
// Detect if this memory is completely covered by the kernel.
if ( base + length <= KERNELEND ) { continue; }
// Detect if this memory is partially covered by the kernel.
if ( base <= KERNELEND && KERNELEND <= base + length )
{
length = (base + length) - KERNELEND;
base = KERNELEND;
}
Page::InitPushRegion(base, length);
}
// If the physical allocator couldn't handle the vast amount of
// physical pages, it may decide to drop some. This shouldn't happen
// until the pebibyte era of RAM.
if ( 0 < Page::pagesnotonstack )
{
Log::PrintF("%zu bytes of RAM aren't used due to technical"
"restrictions.\n", Page::pagesnotonstack * 0x1000UL);
}
// Finish allocating the top level PMLs for the kernels use.
AllocateKernelPMLs();
}
// Prepare the non-forkable kernel PMLs such that forking the kernel
// address space will always keep the kernel mapped.
void AllocateKernelPMLs()
{
const addr_t flags = PML_PRESENT | PML_WRITABLE;
PML* const pml = PMLS[TOPPMLLEVEL];
size_t start = ENTRIES / 2;
size_t end = ENTRIES;
for ( size_t i = start; i < end; i++ )
{
if ( pml->entry[i] & PML_PRESENT ) { continue; }
addr_t page = Page::Get();
if ( !page ) { Panic("out of memory allocating boot PMLs"); }
pml->entry[i] = page | flags;
// Invalidate the new PML and reset it to zeroes.
addr_t pmladdr = (addr_t) (PMLS[TOPPMLLEVEL-1] + i);
InvalidatePage(pmladdr);
Maxsi::Memory::Set((void*) pmladdr, 0, sizeof(PML));
}
}
}
namespace Page
{
void ExtendStack()
{
// This call will always succeed, if it didn't, then the stack
// wouldn't be full, and thus this function won't be called.
addr_t page = Get();
// This call will also succeed, since there are plenty of physical
// pages available and it might need some.
Memory::MapKernel(page, (addr_t) (STACK + stacklength));
// TODO: This may not be needed during the boot process!
//Memory::InvalidatePage((addr_t) (STACK + stacklength));
stacklength += 4096UL / sizeof(addr_t);
}
void InitPushRegion(addr_t position, size_t length)
{
// Align our entries on page boundaries.
addr_t newposition = Page::AlignUp(position);
length = Page::AlignDown((position + length) - newposition);
position = newposition;
while ( length )
{
if ( unlikely(stackused == stacklength) )
{
if ( stackused == MAXSTACKLENGTH )
{
pagesnotonstack += length / 4096UL;
return;
}
ExtendStack();
}
STACK[stackused++] = position;
length -= 4096UL;
position += 4096UL;
}
}
addr_t Get()
{
// TODO: Set out of memory errno here!
if ( unlikely(stackused == 0) ) { return 0; }
return STACK[--stackused];
}
void Put(addr_t page)
{
ASSERT(stackused < MAXSTACKLENGTH);
STACK[stackused++] = page;
}
}
namespace Memory
{
void InvalidatePage(addr_t /*addr*/)
{
// TODO: Actually just call the instruction.
Flush();
}
// Flushes the Translation Lookaside Buffer (TLB).
void Flush()
{
asm volatile("mov %0, %%cr3":: "r"(currentdir));
}
addr_t SwitchAddressSpace(addr_t addrspace)
{
// Don't switch if we are already there.
if ( addrspace == currentdir ) { return currentdir; }
addr_t previous = currentdir;
// Switch and flush the TLB.
asm volatile("mov %0, %%cr3":: "r"(addrspace));
currentdir = addrspace;
return previous;
}
bool MapRangeKernel(addr_t where, size_t bytes)
{
for ( addr_t page = where; page < where + bytes; page += 4096UL )
{
addr_t physicalpage = Page::Get();
if ( physicalpage == 0 )
{
while ( where < page )
{
page -= 4096UL;
physicalpage = UnmapKernel(page);
Page::Put(physicalpage);
}
return false;
}
MapKernel(physicalpage, page);
}
return true;
}
void UnmapRangeKernel(addr_t where, size_t bytes)
{
for ( addr_t page = where; page < where + bytes; page += 4096UL )
{
addr_t physicalpage = UnmapKernel(page);
Page::Put(physicalpage);
}
}
bool MapRangeUser(addr_t where, size_t bytes)
{
for ( addr_t page = where; page < where + bytes; page += 4096UL )
{
addr_t physicalpage = Page::Get();
if ( physicalpage == 0 || !MapUser(physicalpage, page) )
{
while ( where < page )
{
page -= 4096UL;
physicalpage = UnmapUser(page);
Page::Put(physicalpage);
}
return false;
}
}
return true;
}
void UnmapRangeUser(addr_t where, size_t bytes)
{
for ( addr_t page = where; page < where + bytes; page += 4096UL )
{
addr_t physicalpage = UnmapUser(page);
Page::Put(physicalpage);
}
}
template <bool userspace, bool invalidate>
bool Map(addr_t physical, addr_t mapto)
{
const addr_t userflags = userspace ? (PML_USERSPACE | PML_FORK) : 0;
const addr_t flags = userflags | PML_PRESENT | PML_WRITABLE;
// Translate the virtual address into PML indexes.
const size_t MASK = (1<<TRANSBITS)-1;
size_t pmlchildid[TOPPMLLEVEL + 1];
for ( size_t i = 1; i <= TOPPMLLEVEL; i++ )
{
pmlchildid[i] = (mapto >> (12+(i-1)*TRANSBITS)) & MASK;
}
// For each PML level, make sure it exists, and that we may use it.
size_t offset = 0;
for ( size_t i = TOPPMLLEVEL; i > 1; i-- )
{
size_t childid = pmlchildid[i];
PML* pml = PMLS[i] + offset;
addr_t& entry = pml->entry[childid];
if ( !(entry & PML_PRESENT) )
{
// TODO: Possible memory leak when page allocation fails.
addr_t page = Page::Get();
if ( page == 0 ) { return false; }
entry = page | flags;
// Invalidate the new PML and reset it to zeroes.
addr_t pmladdr = (addr_t) (PMLS[i-1] + childid);
InvalidatePage(pmladdr);
Maxsi::Memory::Set((void*) pmladdr, 0, sizeof(PML));
}
else if ( userspace && !(entry & PML_USERSPACE) )
{
PanicF("attempted to map physical page %p to virtual page "
"%p with userspace permissions, but the virtual page "
"wasn't in an userspace PML[%zu]. This is a bug in the "
"code calling this function", physical, mapto, i-1);
}
// Find the index of the next PML in the fractal mapped memory.
offset = offset * ENTRIES + childid;
}
// Actually map the physical page to the virtual page.
(PMLS[1] + offset)->entry[pmlchildid[1]] = physical | flags;
if ( invalidate )
{
InvalidatePage(mapto);
}
return true;
}
template <bool userspace, bool invalidate>
addr_t Unmap(addr_t mapto)
{
// Translate the virtual address into PML indexes.
const size_t MASK = (1<<TRANSBITS)-1;
size_t pmlchildid[TOPPMLLEVEL + 1];
for ( size_t i = 1; i <= TOPPMLLEVEL; i++ )
{
pmlchildid[i] = (mapto >> (12+(i-1)*TRANSBITS)) & MASK;
}
// For each PML level, make sure it exists, and that it belongs to
// user-space.
size_t offset = 0;
for ( size_t i = TOPPMLLEVEL; i > 1; i-- )
{
size_t childid = pmlchildid[i];
PML* pml = PMLS[i] + offset;
addr_t& entry = pml->entry[childid];
if ( !(entry & PML_PRESENT) )
{
PanicF("attempted to unmap virtual page %p with userspace, "
" but the virtual page wasn't mapped. This is a bug "
"in the code calling this function", mapto);
}
else if ( userspace && !(entry & PML_USERSPACE) )
{
PanicF("attempted to unmap virtual page %p it wasn't in an "
"userspace PML[%zu]. This is a bug in the code "
"calling this function", mapto, i-1);
}
// Find the index of the next PML in the fractal mapped memory.
offset = offset * ENTRIES + childid;
}
addr_t& entry = (PMLS[1] + offset)->entry[pmlchildid[1]];
addr_t result = entry & PML_ADDRESS;
entry = 0;
// TODO: If all the entries in PML[N] are not-present, then who
// unmaps its entry from PML[N-1]?
if ( invalidate )
{
Flush();
}
return result;
}
bool MapKernel(addr_t physical, addr_t mapto)
{
return Map<false, false>(physical, mapto);
}
bool MapUser(addr_t physical, addr_t mapto)
{
return Map<true, false>(physical, mapto);
}
addr_t UnmapKernel(addr_t mapto)
{
return Unmap<false, false>(mapto);
}
addr_t UnmapUser(addr_t mapto)
{
return Unmap<true, false>(mapto);
}
// Create an exact copy of the current address space.
// TODO: Copying every frame is endlessly useless in many uses. It'd be
// nice to upgrade this to a copy-on-write algorithm.
addr_t Fork()
{
addr_t newtoppmladdr = Page::Get();
if ( newtoppmladdr == 0 ) { return 0; }
// This is either bad code or very clever code and probably is both.
size_t positionstack[TOPPMLLEVEL+1];
positionstack[TOPPMLLEVEL] = 0;
size_t level = TOPPMLLEVEL;
size_t pmloffset = 0;
bool failure = false;
// This call always succeeds.
MapKernel(newtoppmladdr, (addr_t) (FORKPML + level));
InvalidatePage((addr_t) (FORKPML + level));
// Recurse over the PMLs and fork what should be forked.
while ( positionstack[TOPPMLLEVEL] < ENTRIES )
{
const size_t pos = positionstack[level];
if ( pos == ENTRIES )
{
(positionstack[++level])++;
pmloffset /= ENTRIES;
continue;
}
addr_t entry = (PMLS[level] + pmloffset)->entry[pos];
// If the entry should be forked, fork it!
if ( (entry & PML_FORK) && (entry & PML_PRESENT) )
{
// Pop the physical address of somewhere unused.
addr_t phys = Page::Get();
if ( unlikely(phys == 0) )
{
// Oh no. Out of memory! We'll have to undo everything
// we just did. Argh!
failure = true;
break;
}
// Map the destination page.
addr_t destaddr = (addr_t) (FORKPML + level-1);
MapKernel(phys, destaddr);
InvalidatePage(destaddr);
// Set its entry in the owner.
addr_t flags = entry & PML_FLAGS;
(FORKPML + level)->entry[pos] = phys | flags;
if ( level == 1 )
{
size_t offset = pmloffset * ENTRIES + pos;
// Determine the source page's address.
const void* src = (const void*) (offset * 4096UL);
// Determine the destination page's address.
void* dest = (void*) (FORKPML + level - 1);
Maxsi::Memory::Copy(dest, src, sizeof(PML));
}
else
{
// Fork the PML recursively!
pmloffset = pmloffset * ENTRIES + pos;
positionstack[--level] = 0;
continue;
}
}
// If this entry should be linked, link it.
else
{
FORKPML[level].entry[pos] = entry;
}
positionstack[level]++;
}
if ( !failure )
{
// Now, the new top pml needs to have its fractal memory fixed.
const addr_t flags = PML_PRESENT | PML_WRITABLE;
addr_t mapto;
addr_t childaddr;
(FORKPML + TOPPMLLEVEL)->entry[ENTRIES-1] = newtoppmladdr | flags;
childaddr = (FORKPML + TOPPMLLEVEL)->entry[ENTRIES-2] & PML_ADDRESS;
for ( size_t i = TOPPMLLEVEL-1; i > 0; i-- )
{
mapto = (addr_t) (FORKPML + i);
MapKernel(childaddr, mapto);
InvalidatePage(mapto);
(FORKPML + i)->entry[ENTRIES-1] = newtoppmladdr | flags;
childaddr = (FORKPML + i)->entry[ENTRIES-2] & PML_ADDRESS;
}
return newtoppmladdr;
}
// The fork failed, so'll have to clean up the new address space and
// free all the pages we forked so far. It'd be nice to detect that
// this would happen early on, but it seems to impractical or
// inefficient. Let's just do the dirty work and clean up.
// TODO: Fix this error condition by deleting the new pages.
Panic("Out of memory during fork. This isn't supported yet.");
return 0;
}
}
}