sortix-mirror/kernel/disk/ahci/port.cpp

717 lines
18 KiB
C++

/*
* Copyright (c) 2013, 2014, 2015, 2016, 2021 Jonas 'Sortie' Termansen.
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
* disk/ahci/port.cpp
* Driver for the Advanced Host Controller Interface.
*/
#include <assert.h>
#include <errno.h>
#include <endian.h>
#include <stdarg.h>
#include <stdint.h>
#include <string.h>
#include <time.h>
#include <timespec.h>
#include <sortix/clock.h>
#include <sortix/mman.h>
#include <sortix/kernel/addralloc.h>
#include <sortix/kernel/clock.h>
#include <sortix/kernel/ioctx.h>
#include <sortix/kernel/kthread.h>
#include <sortix/kernel/log.h>
#include <sortix/kernel/memorymanagement.h>
#include <sortix/kernel/signal.h>
#include <sortix/kernel/time.h>
#include "ahci.h"
#include "hba.h"
#include "port.h"
#include "registers.h"
namespace Sortix {
namespace AHCI {
// TODO: Is this needed?
static inline void ahci_port_flush(volatile struct port_regs* port_regs)
{
(void) port_regs->pxcmd;
}
static inline void delay(unsigned int usecs)
{
struct timespec delay =
timespec_make(usecs / 1000000, (usecs % 1000000) * 1000);
Clock* clock = Time::GetClock(CLOCK_BOOTTIME);
clock->SleepDelay(delay);
}
static void copy_ata_string(char* dest, const char* src, size_t length)
{
for ( size_t i = 0; i < length; i += 2 )
{
dest[i + 0] = src[i + 1];
dest[i + 1] = src[i + 0];
}
length = strnlen(dest, length);
while ( 0 < length && dest[length - 1] == ' ' )
length--;
dest[length] = '\0';
}
Port::Port(HBA* hba, uint32_t port_index)
{
port_lock = KTHREAD_MUTEX_INITIALIZER;
memset(&control_alloc, 0, sizeof(control_alloc));
memset(&dma_alloc, 0, sizeof(dma_alloc));
this->hba = hba;
regs = &hba->regs->ports[port_index];
control_physical_frame = 0;
dma_physical_frame = 0;
this->port_index = port_index;
is_control_page_mapped = false;
is_dma_page_mapped = false;
interrupt_signaled = false;
transfer_in_progress = false;
}
Port::~Port()
{
if ( transfer_in_progress )
FinishTransferDMA();
if ( is_control_page_mapped )
Memory::Unmap(control_alloc.from);
FreeKernelAddress(&control_alloc);
if ( is_dma_page_mapped )
Memory::Unmap(dma_alloc.from);
FreeKernelAddress(&dma_alloc);
if ( control_physical_frame )
Page::Put(control_physical_frame, PAGE_USAGE_DRIVER);
if ( dma_physical_frame )
Page::Put(dma_physical_frame, PAGE_USAGE_DRIVER);
}
void Port::LogF(const char* format, ...)
{
// TODO: Print this line in an atomic manner.
Log::PrintF("ahci: pci 0x%X: port %u: ", hba->devaddr, port_index);
va_list ap;
va_start(ap, format);
Log::PrintFV(format, ap);
va_end(ap);
Log::PrintF("\n");
}
bool Port::Initialize()
{
// TODO: Potentially move the wait-for-device-to-be-idle code here from hba.
// Clear interrupt status.
regs->pxis = regs->pxis;
// Clear error bits.
regs->pxserr = regs->pxserr;
if ( !(control_physical_frame = Page::Get(PAGE_USAGE_DRIVER)) )
{
LogF("error: control page allocation failure");
return false;
}
if ( !(dma_physical_frame = Page::Get(PAGE_USAGE_DRIVER)) )
{
LogF("error: dma page allocation failure");
return false;
}
if ( !AllocateKernelAddress(&control_alloc, Page::Size()) )
{
LogF("error: control page virtual address allocation failure");
return false;
}
if ( !AllocateKernelAddress(&dma_alloc, Page::Size()) )
{
LogF("error: dma page virtual address allocation failure");
return false;
}
int prot = PROT_KREAD | PROT_KWRITE;
is_control_page_mapped =
Memory::Map(control_physical_frame, control_alloc.from, prot);
if ( !is_control_page_mapped )
{
LogF("error: control page virtual address allocation failure");
return false;
}
Memory::Flush();
is_dma_page_mapped = Memory::Map(dma_physical_frame, dma_alloc.from, prot);
if ( !is_dma_page_mapped )
{
LogF("dma page virtual address allocation failure");
return false;
}
Memory::Flush();
return true;
}
bool Port::FinishInitialize()
{
// Disable power management transitions for now (IPM = 3 = transitions to
// partial/slumber disabled).
regs->pxsctl = regs->pxsctl | 0x300 /* TODO: Magic constant? */;
// Power on and spin up the device if necessary.
if ( regs->pxcmd & PXCMD_CPD )
regs->pxcmd = regs->pxcmd | PXCMD_POD;
if ( hba->regs->cap & CAP_SSS )
regs->pxcmd = regs->pxcmd | PXCMD_SUD;
// Activate the port.
regs->pxcmd = (regs->pxcmd & ~PXCMD_ICC(16)) | (1 << 28);
if ( !Reset() )
{
// TODO: Is this safe?
return false;
}
// Clear interrupt status.
regs->pxis = regs->pxis;
// Clear error bits.
regs->pxserr = regs->pxserr;
uintptr_t virt = control_alloc.from;
uintptr_t phys = control_physical_frame;
memset((void*) virt, 0, Page::Size());
size_t offset = 0;
clist = (volatile struct command_header*) (virt + offset);
uint64_t pxclb_addr = phys + offset;
regs->pxclb = pxclb_addr >> 0;
regs->pxclbu = pxclb_addr >> 32;
offset += sizeof(struct command_header) * AHCI_COMMAND_HEADER_COUNT;
fis = (volatile struct fis*) (virt + offset);
uint64_t pxf_addr = phys + offset;
regs->pxfb = pxf_addr >> 0;
regs->pxfbu = pxf_addr >> 32;
offset += sizeof(struct fis);
ctbl = (volatile struct command_table*) (virt + offset);
uint64_t ctba_addr = phys + offset;
clist[0].ctba = ctba_addr >> 0;
clist[0].ctbau = ctba_addr >> 32;
offset += sizeof(struct command_table);
prdt = (volatile struct prd*) (virt + offset);
offset += sizeof(struct prd);
// TODO: There can be more of these, fill until end of page!
// Enable FIS receive.
regs->pxcmd = regs->pxcmd | PXCMD_FRE;
ahci_port_flush(regs);
assert(offset <= Page::Size());
uint32_t ssts = regs->pxssts;
uint32_t pxtfd = regs->pxtfd;
if ( (ssts & 0xF) != 0x3 )
return false;
if ( pxtfd & ATA_STATUS_BSY )
return false;
if ( pxtfd & ATA_STATUS_DRQ )
return false;
// TODO: ATAPI.
if ( regs->pxsig == 0xEB140101 )
return false;
// Start DMA engine.
if ( regs->pxcmd & PXCMD_CR )
{
if ( !WaitClear(&regs->pxcmd, PXCMD_CR, false, 500) )
{
LogF("error: timeout waiting for PXCMD_CR to clear");
return false;
}
}
regs->pxcmd = regs->pxcmd | PXCMD_ST;
ahci_port_flush(regs);
// Set which interrupts we want to know about.
regs->pxie = PORT_INTR_ERROR | PXIE_DHRE | PXIE_PSE |
PXIE_DSE | PXIE_SDBE | PXIE_DPE;
ahci_port_flush(regs);
CommandDMA(ATA_CMD_IDENTIFY, 512, false);
if ( !AwaitInterrupt(500 /*ms*/) )
{
LogF("error: IDENTIFY timed out");
transfer_in_progress = false;
return false;
}
transfer_in_progress = false;
memcpy(identify_data, (void*) dma_alloc.from, sizeof(identify_data));
little_uint16_t* words = (little_uint16_t*) dma_alloc.from;
if ( words[0] & (1 << 15) )
return errno = EINVAL, false; // Skipping non-ATA device.
if ( !(words[49] & (1 << 9)) )
return errno = EINVAL, false; // Skipping non-LBA device.
this->is_lba48 = words[83] & (1 << 10);
copy_ata_string(serial, (const char*) &words[10], sizeof(serial) - 1);
copy_ata_string(revision, (const char*) &words[23], sizeof(revision) - 1);
copy_ata_string(model, (const char*) &words[27], sizeof(model) - 1);
uint64_t block_count;
if ( is_lba48 )
{
block_count = (uint64_t) words[100] << 0 |
(uint64_t) words[101] << 16 |
(uint64_t) words[102] << 32 |
(uint64_t) words[103] << 48;
}
else
{
block_count = (uint64_t) words[60] << 0 |
(uint64_t) words[61] << 16;
}
uint64_t block_size = 512;
if( (words[106] & (1 << 14)) &&
!(words[106] & (1 << 15)) &&
(words[106] & (1 << 12)) )
{
block_size = 2 * ((uint64_t) words[117] << 0 |
(uint64_t) words[118] << 16);
}
cylinder_count = words[1];
head_count = words[3];
sector_count = words[6];
// TODO: Verify that DMA is properly supported.
// See kiwi/source/drivers/bus/ata/device.c line 344.
if ( __builtin_mul_overflow(block_count, block_size, &this->device_size) )
{
LogF("error: device size overflows off_t");
return errno = EOVERFLOW, false;
}
this->block_count = (blkcnt_t) block_count;
this->block_size = (blkcnt_t) block_size;
return true;
}
bool Port::Reset()
{
if ( regs->pxcmd & (PXCMD_ST | PXCMD_CR) )
{
regs->pxcmd = regs->pxcmd & ~PXCMD_ST;
if ( !WaitClear(&regs->pxcmd, PXCMD_CR, false, 500) )
{
LogF("error: timeout waiting for PXCMD_CR to clear");
return false;
}
}
if ( regs->pxcmd & (PXCMD_FRE | PXCMD_FR) )
{
regs->pxcmd = regs->pxcmd & ~PXCMD_FRE;
if ( !WaitClear(&regs->pxcmd, PXCMD_FR, false, 500) )
{
LogF("error: timeout waiting for PXCMD_FR to clear");
return false;
}
}
#if 0
// Reset the device
regs->pxsctl = (regs->pxsctl & ~0xF) | 1;
ahci_port_flush(regs);
delay(1500);
regs->pxsctl = (regs->pxsctl & ~0xF);
ahci_port_flush(regs);
#endif
// Wait for the device to be detected.
if ( !WaitSet(&regs->pxssts, 0x1, false, 600) )
return false;
// Clear error.
regs->pxserr = regs->pxserr;
ahci_port_flush(regs);
// Wait for communication to be established with device
if ( regs->pxssts & 0x1 )
{
if ( !WaitSet(&regs->pxssts, 0x3, false, 600) )
return false;
regs->pxserr = regs->pxserr;
ahci_port_flush(regs);
}
// Wait for the device to come back up.
if ( (regs->pxtfd & 0xFF) == 0xFF )
{
delay(500 * 1000);
if ( (regs->pxtfd & 0xFF) == 0xFF )
{
LogF("error: device did not come back up after reset");
return errno = EINVAL, false;
}
}
#if 0
if ( !WaitClear(&regs->pxtfd, ATA_STATUS_BSY, false, 1000) )
{
LogF("error: device did not unbusy");
return false;
}
#endif
return true;
}
void Port::Seek(blkcnt_t block_index, size_t count)
{
uintmax_t lba = (uintmax_t) block_index;
if ( is_lba48 )
{
memset((void *)&ctbl->cfis, 0, sizeof(ctbl->cfis));
ctbl->cfis.count_0_7 = (count >> 0) & 0xff;
ctbl->cfis.count_8_15 = (count >> 8) & 0xff;
ctbl->cfis.lba_0_7 = (lba >> 0) & 0xff;
ctbl->cfis.lba_8_15 = (lba >> 8) & 0xff;
ctbl->cfis.lba_16_23 = (lba >> 16) & 0xff;
ctbl->cfis.lba_24_31 = (lba >> 24) & 0xff;
ctbl->cfis.lba_32_39 = (lba >> 32) & 0xff;
ctbl->cfis.lba_40_47 = (lba >> 40) & 0xff;
ctbl->cfis.device = 0x40;
}
else
{
ctbl->cfis.count_0_7 = (count >> 0) & 0xff;
ctbl->cfis.lba_0_7 = (lba >> 0) & 0xff;
ctbl->cfis.lba_8_15 = (lba >> 8) & 0xff;
ctbl->cfis.lba_16_23 = (lba >> 16) & 0xff;
ctbl->cfis.device = 0x40 | ((lba >> 24) & 0xf);
}
}
void Port::CommandDMA(uint8_t cmd, size_t size, bool write)
{
if ( 0 < size )
{
assert(size <= Page::Size());
assert((size & 1) == 0); /* sizes & addresses must be 2-byte aligned */
}
// Set up the command header.
uint16_t fis_length = 5 /* dwords */;
uint16_t prdtl = size ? 1 : 0;
uint16_t clist_0_dw0l = fis_length;
if ( write )
clist_0_dw0l |= COMMAND_HEADER_DW0_WRITE;
clist[0].dw0l = clist_0_dw0l;
clist[0].prdtl = prdtl;
clist[0].prdbc = 0;
// Set up the physical region descriptor.
if ( prdtl )
{
uint32_t prdt_0_dbc = size - 1;
uint32_t prdt_0_dw3 = prdt_0_dbc;
prdt[0].dba = (uint64_t) dma_physical_frame >> 0 & 0xFFFFFFFF;
prdt[0].dbau = (uint64_t) dma_physical_frame >> 32 & 0xFFFFFFFF;
prdt[0].reserved1 = 0;
prdt[0].dw3 = prdt_0_dw3;
}
// Set up the command table.
ctbl->cfis.type = 0x27;
ctbl->cfis.pm_port = 0;
ctbl->cfis.c_bit = 1;
ctbl->cfis.command = cmd;
// Anticipate we will be delivered an IRQ.
PrepareAwaitInterrupt();
transfer_in_progress = true;
transfer_size = size;
transfer_is_write = write;
// Execute the command.
regs->pxci = 1;
ahci_port_flush(regs);
}
bool Port::FinishTransferDMA()
{
assert(transfer_in_progress);
// Wait for an interrupt to arrive.
if ( !AwaitInterrupt(10000 /*ms*/) )
{
const char* op = transfer_is_write ? "write" : "read";
LogF("error: %s timed out", op);
transfer_in_progress = false;
return errno = EIO, false;
}
while ( transfer_is_write && regs->pxtfd & ATA_STATUS_BSY )
kthread_yield();
transfer_in_progress = false;
return true;
}
off_t Port::GetSize()
{
return device_size;
}
blkcnt_t Port::GetBlockCount()
{
return block_count;
}
blksize_t Port::GetBlockSize()
{
return block_size;
}
uint16_t Port::GetCylinderCount()
{
return cylinder_count;
}
uint16_t Port::GetHeadCount()
{
return head_count;
}
uint16_t Port::GetSectorCount()
{
return sector_count;
}
const char* Port::GetDriver()
{
return "ahci";
}
const char* Port::GetModel()
{
return model;
}
const char* Port::GetSerial()
{
return serial;
}
const char* Port::GetRevision()
{
return revision;
}
const unsigned char* Port::GetATAIdentify(size_t* size_ptr)
{
return *size_ptr = sizeof(identify_data), identify_data;
}
int Port::sync(ioctx_t* ctx)
{
(void) ctx;
ScopedLock lock(&port_lock);
if ( transfer_in_progress && !FinishTransferDMA() )
return -1;
PrepareAwaitInterrupt();
uint8_t cmd = is_lba48 ? ATA_CMD_FLUSH_CACHE_EXT : ATA_CMD_FLUSH_CACHE;
CommandDMA(cmd, 0, false);
// TODO: This might take longer than 30 seconds according to the spec. But
// how long? Let's say twice that?
if ( !AwaitInterrupt(2 * 30000 /*ms*/) )
{
LogF("error: cache flush timed out");
transfer_in_progress = false;
return errno = EIO, -1;
}
transfer_in_progress = false;
if ( regs->pxtfd & (ATA_STATUS_ERR | ATA_STATUS_DF) )
{
LogF("error: IO error");
return errno = EIO, -1;
}
return 0;
}
ssize_t Port::pread(ioctx_t* ctx, unsigned char* buf, size_t count, off_t off)
{
ScopedLock lock(&port_lock);
ssize_t result = 0;
while ( count )
{
if ( device_size <= off )
break;
if ( (uintmax_t) device_size - off < (uintmax_t) count )
count = (size_t) device_size - off;
uintmax_t block_index = (uintmax_t) off / (uintmax_t) block_size;
uintmax_t block_offset = (uintmax_t) off % (uintmax_t) block_size;
uintmax_t amount = block_offset + count;
if ( Page::Size() < amount )
amount = Page::Size();
size_t num_blocks = (amount + block_size - 1) / block_size;
uintmax_t full_amount = num_blocks * block_size;
// If an asynchronous operation is in progress, let it finish.
if ( transfer_in_progress && !FinishTransferDMA() )
return result ? result : -1;
unsigned char* dma_data = (unsigned char*) dma_alloc.from;
unsigned char* data = dma_data + block_offset;
size_t data_size = amount - block_offset;
Seek(block_index, num_blocks);
uint8_t cmd = is_lba48 ? ATA_CMD_READ_DMA_EXT : ATA_CMD_READ_DMA;
CommandDMA(cmd, (size_t) full_amount, false);
if ( !FinishTransferDMA() )
return result ? result : -1;
if ( !ctx->copy_to_dest(buf, data, data_size) )
return result ? result : -1;
buf += data_size;
count -= data_size;
result += data_size;
off += data_size;
}
return result;
}
ssize_t Port::pwrite(ioctx_t* ctx, const unsigned char* buf, size_t count, off_t off)
{
ScopedLock lock(&port_lock);
ssize_t result = 0;
while ( count )
{
if ( device_size <= off )
break;
if ( (uintmax_t) device_size - off < (uintmax_t) count )
count = (size_t) device_size - off;
uintmax_t block_index = (uintmax_t) off / (uintmax_t) block_size;
uintmax_t block_offset = (uintmax_t) off % (uintmax_t) block_size;
uintmax_t amount = block_offset + count;
if ( Page::Size() < amount )
amount = Page::Size();
size_t num_blocks = (amount + block_size - 1) / block_size;
uintmax_t full_amount = num_blocks * block_size;
// If an asynchronous operation is in progress, let it finish.
if ( transfer_in_progress && !FinishTransferDMA() )
return result ? result : -1;
unsigned char* dma_data = (unsigned char*) dma_alloc.from;
unsigned char* data = dma_data + block_offset;
size_t data_size = amount - block_offset;
if ( block_offset || amount < full_amount )
{
Seek(block_index, num_blocks);
uint8_t cmd = is_lba48 ? ATA_CMD_READ_DMA_EXT : ATA_CMD_READ_DMA;
CommandDMA(cmd, (size_t) full_amount, false);
if ( !FinishTransferDMA() )
return result ? result : -1;
}
if ( !ctx->copy_from_src(data, buf, data_size) )
return result ? result : -1;
Seek(block_index, num_blocks);
uint8_t cmd = is_lba48 ? ATA_CMD_WRITE_DMA_EXT : ATA_CMD_WRITE_DMA;
CommandDMA(cmd, (size_t) full_amount, true);
// Let the transfer finish asynchronously so the caller can prepare the
// next write operation to keep the write pipeline busy.
buf += data_size;
count -= data_size;
result += data_size;
off += data_size;
}
return result;
}
void Port::PrepareAwaitInterrupt()
{
interrupt_signaled = false;
}
bool Port::AwaitInterrupt(unsigned int msecs)
{
struct timespec timeout = timespec_make(msecs / 1000, (msecs % 1000) * 1000000L);
Clock* clock = Time::GetClock(CLOCK_BOOTTIME);
struct timespec begun;
clock->Get(&begun, NULL);
while ( true )
{
struct timespec now;
clock->Get(&now, NULL);
if ( interrupt_signaled )
return true;
struct timespec elapsed = timespec_sub(now, begun);
if ( timespec_le(timeout, elapsed) )
return errno = ETIMEDOUT, false;
// TODO: Can't safely back out here unless the pending operation is
// is properly cancelled.
//if ( Signal::IsPending() )
// return errno = EINTR, false;
kthread_yield();
}
}
void Port::OnInterrupt()
{
// Check whether any interrupt are pending.
uint32_t is = regs->pxis;
if ( !is )
return;
// Clear the pending interrupts.
regs->pxis = is;
// Handle error interrupts.
if ( is & PORT_INTR_ERROR )
{
regs->pxserr = regs->pxserr;
// TODO: How exactly should this be handled?
}
if ( !interrupt_signaled )
{
interrupt_signaled = true;
// TODO: Priority schedule the blocking thread now.
}
}
} // namespace AHCI
} // namespace Sortix