sortix-mirror/libc/time/gmtime_r.c

352 lines
8.4 KiB
C

/*
* Copyright (c) 2013, 2023 Jonas 'Sortie' Termansen.
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
* time/gmtime_r.c
* Convert a timestamp into a date and time according to UTC.
*/
#include <stdbool.h>
#include <time.h>
#include <stdint.h>
#include <time.h>
#define DAYS_JANUARY 31
#define DAYS_FEBRUARY 28
#define DAYS_MARCH 31
#define DAYS_APRIL 30
#define DAYS_MAY 31
#define DAYS_JUNE 30
#define DAYS_JULY 31
#define DAYS_AUGUST 31
#define DAYS_SEPTEMBER 30
#define DAYS_OCTOBER 31
#define DAYS_NOVEMBER 30
#define DAYS_DECEMBER 31
#define UNKNOWN 127
#define DECL_LEAP_SECOND(year, jun, dec) \
{0, 0, 0, 0, 0, jun, 0, 0, 0, 0, 0, dec}
static const char leap_seconds[][12] =
{
DECL_LEAP_SECOND(1970, 0, 0),
DECL_LEAP_SECOND(1971, 0, 0),
DECL_LEAP_SECOND(1972, 1, 1),
DECL_LEAP_SECOND(1973, 0, 1),
DECL_LEAP_SECOND(1974, 0, 1),
DECL_LEAP_SECOND(1975, 0, 1),
DECL_LEAP_SECOND(1976, 0, 1),
DECL_LEAP_SECOND(1977, 0, 1),
DECL_LEAP_SECOND(1978, 0, 1),
DECL_LEAP_SECOND(1979, 0, 1),
DECL_LEAP_SECOND(1980, 0, 0),
DECL_LEAP_SECOND(1981, 1, 0),
DECL_LEAP_SECOND(1982, 1, 0),
DECL_LEAP_SECOND(1983, 1, 0),
DECL_LEAP_SECOND(1984, 0, 0),
DECL_LEAP_SECOND(1985, 1, 0),
DECL_LEAP_SECOND(1986, 0, 0),
DECL_LEAP_SECOND(1987, 0, 1),
DECL_LEAP_SECOND(1988, 0, 0),
DECL_LEAP_SECOND(1989, 0, 1),
DECL_LEAP_SECOND(1990, 0, 1),
DECL_LEAP_SECOND(1991, 0, 0),
DECL_LEAP_SECOND(1992, 1, 0),
DECL_LEAP_SECOND(1993, 1, 0),
DECL_LEAP_SECOND(1994, 1, 0),
DECL_LEAP_SECOND(1995, 0, 1),
DECL_LEAP_SECOND(1996, 0, 0),
DECL_LEAP_SECOND(1997, 1, 0),
DECL_LEAP_SECOND(1998, 0, 1),
DECL_LEAP_SECOND(1999, 0, 0),
DECL_LEAP_SECOND(2000, 0, 0),
DECL_LEAP_SECOND(2001, 0, 0),
DECL_LEAP_SECOND(2002, 0, 0),
DECL_LEAP_SECOND(2003, 0, 0),
DECL_LEAP_SECOND(2004, 0, 0),
DECL_LEAP_SECOND(2005, 0, 1),
DECL_LEAP_SECOND(2006, 0, 0),
DECL_LEAP_SECOND(2007, 0, 0),
DECL_LEAP_SECOND(2008, 0, 1),
DECL_LEAP_SECOND(2009, 0, 0),
DECL_LEAP_SECOND(2010, 0, 0),
DECL_LEAP_SECOND(2011, 0, 0),
DECL_LEAP_SECOND(2012, 1, 0),
DECL_LEAP_SECOND(2013, 0, 0),
DECL_LEAP_SECOND(2014, 0, 0),
DECL_LEAP_SECOND(2015, 1, 0),
DECL_LEAP_SECOND(2016, 0, 1),
DECL_LEAP_SECOND(2017, 0, 0),
DECL_LEAP_SECOND(2018, 0, 0),
DECL_LEAP_SECOND(2019, 0, 0),
DECL_LEAP_SECOND(2020, 0, 0),
DECL_LEAP_SECOND(2021, 0, 0),
DECL_LEAP_SECOND(2022, 0, 0),
DECL_LEAP_SECOND(2023, 0, UNKNOWN),
};
static const char month_days_list[12] =
{
DAYS_JANUARY,
DAYS_FEBRUARY,
DAYS_MARCH,
DAYS_APRIL,
DAYS_MAY,
DAYS_JUNE,
DAYS_JULY,
DAYS_AUGUST,
DAYS_SEPTEMBER,
DAYS_OCTOBER,
DAYS_NOVEMBER,
DAYS_DECEMBER,
};
static time_t get_leap_second_maybe(int year, int month)
{
const time_t num_years = sizeof(leap_seconds) / sizeof(leap_seconds[0]);
if ( year < 1970 )
return 0;
if ( num_years <= year-1970 )
return UNKNOWN;
return leap_seconds[year-1970][month];
}
static time_t get_leap_second(int year, int month)
{
time_t result = get_leap_second_maybe(year, month);
return result == UNKNOWN ? 0 : result;
}
static time_t leap_seconds_in_year(int year)
{
time_t ret = 0;
for ( int i = 0; i < 12; i++ )
ret += get_leap_second(year, i);
return ret;
}
static bool is_leap_year(int year)
{
return (year % 4 == 0 && year % 100 != 0) || year % 400 == 0;
}
static time_t days_in_year(int year)
{
return DAYS_JANUARY +
DAYS_FEBRUARY + (is_leap_year(year) ? 1 : 0) +
DAYS_MARCH +
DAYS_APRIL +
DAYS_MAY +
DAYS_JUNE +
DAYS_JULY +
DAYS_AUGUST +
DAYS_SEPTEMBER +
DAYS_OCTOBER +
DAYS_NOVEMBER +
DAYS_DECEMBER;
}
static int days_in_month(int year, int month)
{
return month_days_list[month] + (month == 1 && is_leap_year(year));
}
struct tm* gmtime_r(const time_t* time_ptr, struct tm* ret)
{
time_t left = *time_ptr;
ret->tm_year = 1970;
ret->tm_wday = 4 /* Supposedly, the world began on a Thursday. */;
// If the timestamp is after the epoch.
while ( 0 < left )
{
time_t year_leaps = leap_seconds_in_year(ret->tm_year);
time_t year_days = days_in_year(ret->tm_year);
time_t year_seconds = year_days * 24 * 60 * 60 + year_leaps;
if ( year_seconds <= left )
{
left -= year_seconds;
ret->tm_wday = (ret->tm_wday + year_days) % 7;
ret->tm_year++;
continue;
}
break;
}
// If the timestamp was before the epoch.
while ( left < 0 )
{
ret->tm_year--;
time_t year_leaps = leap_seconds_in_year(ret->tm_year);
time_t year_days = days_in_year(ret->tm_year);
time_t year_seconds = year_days * 24 * 60 * 60 + year_leaps;
left += year_seconds;
// We need to avoid taking the modulo of a negative value or the
// (broken) C modulo operator gives the wrong result.
ret->tm_wday = (ret->tm_wday - year_days + 7*7*7*7) % 7;
}
// Figure out the correct month.
ret->tm_mon = 0;
ret->tm_yday = 0;
while ( true )
{
int month_leaps = get_leap_second(ret->tm_year, ret->tm_mon);
int month_days = days_in_month(ret->tm_year, ret->tm_mon);
int month_seconds = month_days * 24 * 60 * 60 + month_leaps;
if ( month_seconds <= left )
{
left -= month_seconds;
ret->tm_mon++;
ret->tm_yday += month_days;
ret->tm_wday = (ret->tm_wday + month_days) % 7;
continue;
}
break;
}
ret->tm_mday = left / (24 * 60 * 60);
left = left % (24 * 60 * 60);
// If this is a regular timestamp.
if ( ret->tm_mday < days_in_month(ret->tm_year, ret->tm_mon) )
{
ret->tm_yday += ret->tm_mday;
ret->tm_hour = left / (60 * 60);
left = left % (60 * 60);
ret->tm_min = left / 60;
left = left % 60;
ret->tm_sec = left;
}
// If we got the timestamp for an added leap second.
else
{
ret->tm_mday--; // Seemingly additional day.
ret->tm_yday += ret->tm_mday;
ret->tm_hour = 23;
ret->tm_min = 59;
ret->tm_sec = 60;
}
ret->tm_wday = (ret->tm_wday + ret->tm_mday) % 7;
// TODO: Support daylight savings and timezones.
ret->tm_isdst = -1;
// Fix the ranges of some of the variables.
ret->tm_mday += 1;
ret->tm_year -= 1900;
return ret;
}
time_t timegm(struct tm* tm)
{
time_t year = tm->tm_year + 1900;
time_t month = tm->tm_mon;
time_t day = tm->tm_mday - 1;
time_t hour = tm->tm_hour;
time_t minute = tm->tm_min;
time_t second = tm->tm_sec;
time_t ret = 0;
for ( time_t y = 1970; y < year; y++ )
{
time_t year_leaps = leap_seconds_in_year(y);
time_t year_days = days_in_year(y);
time_t year_seconds = year_days * 24 * 60 * 60 + year_leaps;
ret += year_seconds;
}
for ( int m = 0; m < month; m++ )
{
int month_leaps = get_leap_second(year, m);
int month_days = days_in_month(year, m);
int month_seconds = month_days * 24 * 60 * 60 + month_leaps;
ret += month_seconds;
}
ret += (time_t) day * 24 * 60 * 60;
ret += (time_t) hour * 60 * 60;
ret += (time_t) minute * 60;
ret += (time_t) second * 1;
gmtime_r(&ret, tm);
return ret;
}
int sub_leap_seconds(time_t* ptr)
{
time_t t = *ptr;
time_t next = 0;
time_t offset = 0;
for ( int year = 1970; true; year++ )
{
for ( int month = 0; month < 12; month++ )
{
time_t seconds = days_in_month(year, month) * 24 * 60 * 60;
time_t leap = get_leap_second_maybe(year, month);
next += seconds;
if ( leap == UNKNOWN )
{
*ptr = t - offset;
return t < next - 1 ? 1 : -1;
}
next += leap;
if ( t < next )
{
*ptr = t - offset;
return 0 < leap && t + 1 == next ? 0 : 1;
}
offset += leap;
}
}
}
int add_leap_seconds(time_t* ptr)
{
time_t t = *ptr;
time_t next = 0;
time_t offset = 0;
for ( int year = 1970; true; year++ )
{
for ( int month = 0; month < 12; month++ )
{
time_t seconds = days_in_month(year, month) * 24 * 60 * 60;
time_t leap = get_leap_second_maybe(year, month);
next += seconds;
if ( leap == UNKNOWN )
{
*ptr = t + offset;
return t < next - 1 ? 1 : -1;
}
if ( t < next )
{
*ptr = t + offset;
return leap < 0 && t + 1 == next ? 0 : 1;
}
offset += leap;
}
}
}