sortix-mirror/kernel/scheduler.cpp

526 lines
15 KiB
C++

/*
* Copyright (c) 2011-2015, 2021-2022 Jonas 'Sortie' Termansen.
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
* scheduler.cpp
* Decides the order to execute threads in and switching between them.
*/
#include <sys/types.h>
#include <assert.h>
#include <string.h>
#include <timespec.h>
#if defined(__x86_64__)
#include <msr.h>
#endif
#include <sortix/clock.h>
#include <sortix/timespec.h>
#include <sortix/kernel/decl.h>
#include <sortix/kernel/interrupt.h>
#include <sortix/kernel/kernel.h>
#include <sortix/kernel/memorymanagement.h>
#include <sortix/kernel/process.h>
#include <sortix/kernel/registers.h>
#include <sortix/kernel/scheduler.h>
#include <sortix/kernel/signal.h>
#include <sortix/kernel/syscall.h>
#include <sortix/kernel/thread.h>
#include <sortix/kernel/time.h>
#if defined(__i386__) || defined(__x86_64__)
#include "x86-family/gdt.h"
#include "x86-family/float.h"
#endif
namespace Sortix {
namespace Scheduler {
static Thread* current_thread;
void SaveInterruptedContext(const struct interrupt_context* intctx,
struct thread_registers* registers)
{
#if defined(__i386__)
registers->signal_pending = intctx->signal_pending;
registers->kerrno = intctx->kerrno;
registers->eax = intctx->eax;
registers->ebx = intctx->ebx;
registers->ecx = intctx->ecx;
registers->edx = intctx->edx;
registers->edi = intctx->edi;
registers->esi = intctx->esi;
registers->esp = intctx->esp;
registers->ebp = intctx->ebp;
registers->eip = intctx->eip;
registers->eflags = intctx->eflags;
registers->fsbase = (unsigned long) GDT::GetFSBase();
registers->gsbase = (unsigned long) GDT::GetGSBase();
asm ( "mov %%cr3, %0" : "=r"(registers->cr3) );
registers->kernel_stack = GDT::GetKernelStack();
registers->cs = intctx->cs;
registers->ds = intctx->ds;
registers->ss = intctx->ss;
asm volatile ("fxsave (%0)" : : "r"(registers->fpuenv));
#elif defined(__x86_64__)
registers->signal_pending = intctx->signal_pending;
registers->kerrno = intctx->kerrno;
registers->rax = intctx->rax;
registers->rbx = intctx->rbx;
registers->rcx = intctx->rcx;
registers->rdx = intctx->rdx;
registers->rdi = intctx->rdi;
registers->rsi = intctx->rsi;
registers->rsp = intctx->rsp;
registers->rbp = intctx->rbp;
registers->r8 = intctx->r8;
registers->r9 = intctx->r9;
registers->r10 = intctx->r10;
registers->r11 = intctx->r11;
registers->r12 = intctx->r12;
registers->r13 = intctx->r13;
registers->r14 = intctx->r14;
registers->r15 = intctx->r15;
registers->r15 = intctx->r15;
registers->rip = intctx->rip;
registers->rflags = intctx->rflags;
registers->fsbase = (unsigned long) rdmsr(MSRID_FSBASE);
registers->gsbase = (unsigned long) rdmsr(MSRID_GSBASE);
asm ( "mov %%cr3, %0" : "=r"(registers->cr3) );
registers->kernel_stack = GDT::GetKernelStack();
registers->cs = intctx->cs;
registers->ds = intctx->ds;
registers->ss = intctx->ss;
asm volatile ("fxsave (%0)" : : "r"(registers->fpuenv));
#else
#warning "You need to implement register saving"
#endif
}
void LoadInterruptedContext(struct interrupt_context* intctx,
const struct thread_registers* registers)
{
#if defined(__i386__)
intctx->signal_pending = registers->signal_pending;
intctx->kerrno = registers->kerrno;
intctx->eax = registers->eax;
intctx->ebx = registers->ebx;
intctx->ecx = registers->ecx;
intctx->edx = registers->edx;
intctx->edi = registers->edi;
intctx->esi = registers->esi;
intctx->esp = registers->esp;
intctx->ebp = registers->ebp;
intctx->eip = registers->eip;
intctx->eflags = registers->eflags;
GDT::SetFSBase(registers->fsbase);
GDT::SetGSBase(registers->gsbase);
asm volatile ( "mov %0, %%cr3" : : "r"(registers->cr3) );
GDT::SetKernelStack(registers->kernel_stack);
intctx->cs = registers->cs;
intctx->ds = registers->ds;
intctx->ss = registers->ss;
asm volatile ("fxrstor (%0)" : : "r"(registers->fpuenv));
#elif defined(__x86_64__)
intctx->signal_pending = registers->signal_pending;
intctx->kerrno = registers->kerrno;
intctx->rax = registers->rax;
intctx->rbx = registers->rbx;
intctx->rcx = registers->rcx;
intctx->rdx = registers->rdx;
intctx->rdi = registers->rdi;
intctx->rsi = registers->rsi;
intctx->rsp = registers->rsp;
intctx->rbp = registers->rbp;
intctx->r8 = registers->r8;
intctx->r9 = registers->r9;
intctx->r10 = registers->r10;
intctx->r11 = registers->r11;
intctx->r12 = registers->r12;
intctx->r13 = registers->r13;
intctx->r14 = registers->r14;
intctx->r15 = registers->r15;
intctx->r15 = registers->r15;
intctx->rip = registers->rip;
intctx->rflags = registers->rflags;
wrmsr(MSRID_FSBASE, registers->fsbase);
wrmsr(MSRID_GSBASE, registers->gsbase);
asm volatile ( "mov %0, %%cr3" : : "r"(registers->cr3) );
GDT::SetKernelStack(registers->kernel_stack);
intctx->cs = registers->cs;
intctx->ds = registers->ds;
intctx->ss = registers->ss;
asm volatile ("fxrstor (%0)" : : "r"(registers->fpuenv));
#else
#warning "You need to implement register loading"
#endif
}
extern "C" void fake_interrupt(void);
// Pretend a particular interrupt arrived on another thread's stack. This
// assumes we're _not_ on current_thread's stack right now. This sets up the
// interrupt context such that the interrupt handler runs in that thread.
// The interrupt handler runs with premption enabled. This is used to deliver
// signals during context switches, as the signal handler needs to have
// preemption enabled.
static void FakeInterruptedContext(struct interrupt_context* intctx, int int_no)
{
#if defined(__i386__)
uintptr_t stack = current_thread->kernelstackpos +
current_thread->kernelstacksize;
stack -= sizeof(struct interrupt_context);
struct interrupt_context* fakectx = (struct interrupt_context*) stack;
memcpy(fakectx, intctx, sizeof(struct interrupt_context));
fakectx->int_no = int_no;
fakectx->err_code = 0;
stack -= 4;
stack &= 0xFFFFFFF0;
intctx->signal_pending = intctx->signal_pending;
intctx->kerrno = 0;
intctx->cr2 = 0;
intctx->ds = KDS | KRPL;
intctx->edi = intctx->edi;
intctx->esi = intctx->esi;
intctx->ebp = intctx->signal_pending;
intctx->ebx = (uintptr_t) fakectx;
intctx->edx = intctx->edx;
intctx->ecx = intctx->ecx;
intctx->eax = intctx->eax;
intctx->int_no = intctx->int_no;
intctx->err_code = intctx->err_code;
intctx->eip = (uintptr_t) fake_interrupt;
intctx->cs = KCS | KRPL;
intctx->eflags = FLAGS_RESERVED1 | FLAGS_INTERRUPT | FLAGS_ID;
intctx->esp = stack;
intctx->ss = KDS | KRPL;
#elif defined(__x86_64__)
uintptr_t stack = current_thread->kernelstackpos +
current_thread->kernelstacksize;
stack -= sizeof(struct interrupt_context);
struct interrupt_context* fakectx = (struct interrupt_context*) stack;
memcpy(fakectx, intctx, sizeof(struct interrupt_context));
fakectx->int_no = int_no;
fakectx->err_code = 0;
stack &= 0xFFFFFFFFFFFFFFF0;
intctx->signal_pending = intctx->signal_pending;
intctx->kerrno = 0;
intctx->cr2 = 0;
intctx->ds = KDS | KRPL;
intctx->rdi = (uintptr_t) fakectx;
intctx->rsi = intctx->rsi;
intctx->rbp = intctx->signal_pending;
intctx->rbx = (uintptr_t) fakectx;
intctx->rdx = intctx->rdx;
intctx->rcx = intctx->rcx;
intctx->rax = intctx->rax;
intctx->r8 = intctx->r8;
intctx->r9 = intctx->r9;
intctx->r10 = intctx->r10;
intctx->r11 = intctx->r11;
intctx->r12 = intctx->r12;
intctx->r13 = intctx->r13;
intctx->r14 = intctx->r14;
intctx->r15 = intctx->r15;
intctx->int_no = intctx->int_no;
intctx->err_code = intctx->err_code;
intctx->rip = (uintptr_t) fake_interrupt;
intctx->cs = KCS | KRPL;
intctx->rflags = FLAGS_RESERVED1 | FLAGS_INTERRUPT | FLAGS_ID;
intctx->rsp = stack;
intctx->ss = KDS | KRPL;
#else
#warning "You need to implement faking an interrupt"
#endif
}
static void SwitchRegisters(struct interrupt_context* intctx,
Thread* prev,
Thread* next)
{
if ( prev == next )
return;
SaveInterruptedContext(intctx, &prev->registers);
if ( !prev->registers.cr3 )
Log::PrintF("Thread %p had cr3=0x%zx\n", prev, prev->registers.cr3);
if ( !next->registers.cr3 )
Log::PrintF("Thread %p has cr3=0x%zx\n", next, next->registers.cr3);
LoadInterruptedContext(intctx, &next->registers);
current_thread = next;
}
static Thread* idle_thread;
static Thread* first_runnable_thread;
static Thread* true_current_thread;
static Process* init_process;
static void SwitchThread(struct interrupt_context* intctx,
Thread* old_thread,
Thread* new_thread)
{
assert(new_thread->state == ThreadState::RUNNABLE ||
new_thread == idle_thread);
SwitchRegisters(intctx, old_thread, new_thread);
if ( intctx->signal_pending && InUserspace(intctx) )
{
// Become the thread for real and run the signal handler.
if ( old_thread == new_thread )
{
// We're already this thread, so run the signal handler.
Interrupt::Enable();
assert(Interrupt::IsEnabled());
Signal::DispatchHandler(intctx, NULL);
}
else
{
// We need to transfer execution to the correct stack. We know the
// the thread is in user-space and isn't using its kernel stack, and
// we know we're not using the stack right now.
FakeInterruptedContext(intctx, 130);
}
}
}
static Thread* FindRunnableThreadWithSystemTid(uintptr_t system_tid)
{
Thread* begun_thread = first_runnable_thread;
if ( !begun_thread )
return NULL;
Thread* iter = begun_thread;
do
{
if ( iter->system_tid == system_tid )
return iter;
iter = iter->scheduler_list_next;
} while ( iter != begun_thread );
return NULL;
}
static Thread* PopNextThread(bool yielded)
{
Thread* result;
uintptr_t yield_to_tid = current_thread->yield_to_tid;
if ( yielded && yield_to_tid != 0 )
{
if ( (result = FindRunnableThreadWithSystemTid(yield_to_tid)) )
return result;
}
if ( first_runnable_thread )
{
result = first_runnable_thread;
first_runnable_thread = first_runnable_thread->scheduler_list_next;
}
else
{
result = idle_thread;
}
return result;
}
void SwitchTo(struct interrupt_context* intctx, Thread* new_thread)
{
Thread* old_thread = CurrentThread();
if ( new_thread == old_thread )
return;
if ( new_thread->state != ThreadState::RUNNABLE )
return;
if ( old_thread != idle_thread )
first_runnable_thread = old_thread;
true_current_thread = new_thread;
SwitchThread(intctx, old_thread, new_thread);
}
static void RealSwitch(struct interrupt_context* intctx, bool yielded)
{
Thread* old_thread = CurrentThread();
Thread* new_thread = PopNextThread(yielded);
true_current_thread = new_thread;
SwitchThread(intctx, old_thread, new_thread);
}
void Switch(struct interrupt_context* intctx)
{
RealSwitch(intctx, false);
}
void InterruptYieldCPU(struct interrupt_context* intctx, void* /*user*/)
{
bool wait = false;
switch ( current_thread->yield_operation )
{
case YIELD_OPERATION_NONE: RealSwitch(intctx, true); return;
case YIELD_OPERATION_WAIT_FUTEX:
wait = !current_thread->futex_woken && !current_thread->timer_woken;
break;
case YIELD_OPERATION_WAIT_FUTEX_SIGNAL:
wait = !current_thread->futex_woken && !current_thread->timer_woken &&
!asm_signal_is_pending;
break;
case YIELD_OPERATION_WAIT_KUTEX:
wait = !current_thread->kutex_woken && !current_thread->timer_woken;
break;
case YIELD_OPERATION_WAIT_KUTEX_SIGNAL:
wait = !current_thread->kutex_woken && !current_thread->timer_woken &&
!asm_signal_is_pending;
break;
}
if ( wait )
{
SetThreadState(current_thread, ThreadState::FUTEX_WAITING);
RealSwitch(intctx, false);
}
}
void ThreadExitCPU(struct interrupt_context* intctx, void* /*user*/)
{
SetThreadState(current_thread, ThreadState::DEAD);
RealSwitch(intctx, false);
}
// The idle thread serves no purpose except being an infinite loop that does
// nothing, which is only run when the system has nothing to do.
void SetIdleThread(Thread* thread)
{
assert(!idle_thread);
idle_thread = thread;
SetThreadState(thread, ThreadState::NONE);
current_thread = thread;
true_current_thread = thread;
}
void SetInitProcess(Process* init)
{
init_process = init;
}
Process* GetInitProcess()
{
return init_process;
}
Process* GetKernelProcess()
{
if ( !idle_thread )
return NULL;
return idle_thread->process;
}
void SetThreadState(Thread* thread, ThreadState state, bool wake_only)
{
bool was_enabled = Interrupt::SetEnabled(false);
// Avoid transitioning to the RUNNABLE state from unintended states.
if ( wake_only && thread->state != ThreadState::FUTEX_WAITING )
state = thread->state;
// Remove the thread from the list of runnable threads.
if ( thread->state == ThreadState::RUNNABLE &&
state != ThreadState::RUNNABLE )
{
if ( thread == first_runnable_thread )
first_runnable_thread = thread->scheduler_list_next;
if ( thread == first_runnable_thread )
first_runnable_thread = NULL;
assert(thread->scheduler_list_prev);
assert(thread->scheduler_list_next);
thread->scheduler_list_prev->scheduler_list_next = thread->scheduler_list_next;
thread->scheduler_list_next->scheduler_list_prev = thread->scheduler_list_prev;
thread->scheduler_list_prev = NULL;
thread->scheduler_list_next = NULL;
}
// Insert the thread into the scheduler's carousel linked list.
if ( thread->state != ThreadState::RUNNABLE &&
state == ThreadState::RUNNABLE )
{
if ( first_runnable_thread == NULL )
first_runnable_thread = thread;
thread->scheduler_list_prev = first_runnable_thread->scheduler_list_prev;
thread->scheduler_list_next = first_runnable_thread;
first_runnable_thread->scheduler_list_prev = thread;
thread->scheduler_list_prev->scheduler_list_next = thread;
}
thread->state = state;
assert(thread->state != ThreadState::RUNNABLE || thread->scheduler_list_prev);
assert(thread->state != ThreadState::RUNNABLE || thread->scheduler_list_next);
Interrupt::SetEnabled(was_enabled);
}
void SetSignalPending(Thread* thread, unsigned long is_pending)
{
thread->registers.signal_pending = is_pending;
if ( is_pending )
Scheduler::SetThreadState(thread, ThreadState::RUNNABLE, true);
}
ThreadState GetThreadState(Thread* thread)
{
return thread->state;
}
} // namespace Scheduler
} // namespace Sortix
namespace Sortix {
int sys_sched_yield(void)
{
return kthread_yield(), 0;
}
} // namespace Sortix
namespace Sortix {
namespace Scheduler {
void ScheduleTrueThread()
{
bool was_enabled = Interrupt::SetEnabled(false);
if ( true_current_thread != current_thread )
{
current_thread->yield_to_tid = 0;
first_runnable_thread = true_current_thread;
kthread_yield();
}
Interrupt::SetEnabled(was_enabled);
}
} // namespace Scheduler
} // namespace Sortix
namespace Sortix {
Thread* CurrentThread()
{
return Scheduler::current_thread;
}
Process* CurrentProcess()
{
return CurrentThread()->process;
}
} // namespace Sortix