sortix-mirror/kernel/pci-mmio.cpp

155 lines
3.9 KiB
C++

/*
* Copyright (c) 2014, 2016, 2017 Jonas 'Sortie' Termansen.
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
* pci-mmio.cpp
* Functions for handling PCI devices.
*/
#include <assert.h>
#include <errno.h>
#include <stdint.h>
#include <string.h>
#include <sortix/mman.h>
#include <sortix/kernel/addralloc.h>
#include <sortix/kernel/memorymanagement.h>
#include <sortix/kernel/pci.h>
#include <sortix/kernel/pci-mmio.h>
#if defined(__i386__) || defined(__x86_64__)
#include "x86-family/memorymanagement.h"
#endif
namespace Sortix {
bool MapPCIBAR(addralloc_t* allocation, pcibar_t bar, addr_t mtype)
{
if ( !bar.is_mmio() )
return errno = EINVAL, false;
uint64_t phys_addr = bar.addr();
uint64_t phys_size = bar.size();
size_t addr_unalignment = phys_addr % Page::Size();
if ( addr_unalignment )
{
phys_addr -= addr_unalignment;
if ( (uint64_t) 0 - addr_unalignment <= phys_size )
return errno = EOVERFLOW, false;
phys_size += addr_unalignment;
}
size_t size_unalignment = phys_size % Page::Size();
if ( size_unalignment )
{
phys_size -= size_unalignment;
phys_size += Page::Size();
if ( phys_size == 0 )
return errno = EOVERFLOW, false;
}
if ( SIZE_MAX < phys_size )
return errno = EOVERFLOW, false;
size_t size = phys_size;
if ( !AllocateKernelAddress(allocation, size) )
return false;
for ( size_t i = 0; i < size; i += Page::Size() )
{
bool failure = false;
int prot = PROT_KWRITE | PROT_KREAD;
uintptr_t mapat = allocation->from + i;
if ( sizeof(void*) <= 4 && 0x100000000 <= phys_addr + i )
errno = EOVERFLOW, failure = true;
else
{
if ( !Memory::MapPAT(phys_addr + i, mapat, prot, mtype) )
failure = true;
}
if ( failure )
{
for ( size_t n = 0; n < i; n += Page::Size() )
Memory::Unmap(allocation->from + n);
Memory::Flush();
FreeKernelAddress(allocation);
return false;
}
}
Memory::Flush();
allocation->from += addr_unalignment;
allocation->size = bar.size();
return true;
}
void UnmapPCIBar(addralloc_t* allocation)
{
size_t unalignment = allocation->from % Page::Size();
allocation->from = Page::AlignDown(allocation->from);
allocation->size = Page::AlignUp(unalignment + allocation->size);
for ( size_t i = 0; i < allocation->size; i += Page::Size() )
Memory::Unmap(allocation->from + i);
Memory::Flush();
FreeKernelAddress(allocation);
memset(allocation, 0, sizeof(*allocation));
}
bool AllocateAndMapPage(paddrmapped_t* ret, enum page_usage usage, addr_t mtype)
{
addralloc_t kmem_virt;
if ( !ret )
return errno = EINVAL, false;
if ( !AllocateKernelAddress(&kmem_virt, Page::Size()) )
return errno = ENOMEM, false;
addr_t page = Page::Get(usage);
if ( !page )
{
FreeKernelAddress(&kmem_virt);
return errno = ENOMEM, false;
}
int prot = PROT_KREAD | PROT_KWRITE;
if ( !Memory::MapPAT(page, kmem_virt.from, prot, mtype) )
{
Page::Put(page, usage);
FreeKernelAddress(&kmem_virt);
return false;
}
ret->from = kmem_virt.from;
ret->size = kmem_virt.size;
ret->phys = page;
ret->usage = usage;
return true;
}
void FreeAllocatedAndMappedPage(paddrmapped_t* alloc)
{
if ( alloc->size == 0 )
return;
Memory::Unmap(alloc->from);
Memory::Flush();
Page::Put(alloc->phys, alloc->usage);
alloc->size = 0;
}
} // namespace Sortix