/* * Copyright (c) 2013, 2014, 2015, 2018, 2023 Jonas 'Sortie' Termansen. * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * * inode.cpp * Filesystem inode. */ #define __STDC_CONSTANT_MACROS #define __STDC_LIMIT_MACROS #include #include #include #include #include #include #include #include #include #include #include #include #include #include "ext-constants.h" #include "ext-structs.h" #include "fat.h" #include "block.h" #include "blockgroup.h" #include "device.h" #include "fatfs.h" #include "filesystem.h" #include "inode.h" #include "util.h" #ifndef S_SETABLE #define S_SETABLE 02777 #endif #ifndef O_WRITE #define O_WRITE (O_WRONLY | O_RDWR) #endif Inode::Inode(Filesystem* filesystem, uint32_t inode_id) { this->prev_inode = NULL; this->next_inode = NULL; this->prev_hashed = NULL; this->next_hashed = NULL; this->prev_dirty = NULL; this->next_dirty = NULL; this->data_block = NULL; this->data = NULL; this->filesystem = filesystem; this->reference_count = 1; this->remote_reference_count = 0; this->inode_id = inode_id; this->dirty = false; } Inode::~Inode() { Sync(); if ( data_block ) data_block->Unref(); Unlink(); } uint32_t Inode::Mode() { if ( inode_id == filesystem->root_inode_id ) return filesystem->mode_dir; mode_t mode = dirent->attributes & FAT_ATTRIBUTE_DIRECTORY ? filesystem->mode_dir : filesystem->mode_reg; if ( dirent->attributes & FAT_ATTRIBUTE_READ_ONLY ) mode &= ~0222; return mode; } void Inode::SetMode(uint32_t mode) { (void) mode; assert(filesystem->device->write); assert(false); // TODO: Unsupported. } uint32_t Inode::UserId() { return filesystem->uid; } void Inode::SetUserId(uint32_t user) { (void) user; assert(filesystem->device->write); assert(false); // TODO: Unsupported. } uint32_t Inode::GroupId() { return filesystem->gid; } void Inode::SetGroupId(uint32_t group) { (void) group; assert(filesystem->device->write); assert(false); // TODO: Unsupported. } uint64_t Inode::Size() { if ( inode_id == filesystem->root_inode_id ) return 0; if ( dirent->attributes & FAT_ATTRIBUTE_DIRECTORY ) return 0; return dirent->size; } void Inode::SetSize(uint64_t new_size) { assert(filesystem->device->write); assert(false); // TODO: Not implemented. bool largefile = filesystem->sb->s_feature_ro_compat & FAT_FEATURE_RO_COMPAT_LARGE_FILE; uint32_t lower = new_size & 0xFFFFFFFF; uint32_t upper = new_size >> 32; // TODO: Enforce filesize limit with no largefile support or non-files. data->i_size = lower; // TODO: Figure out these i_blocks semantics and how stuff is reserved. const uint64_t ENTRIES = filesystem->block_size / sizeof(uint32_t); uint64_t block_direct = sizeof(data->i_block) / sizeof(uint32_t) - 3; uint64_t block_singly = ENTRIES; uint64_t block_doubly = block_singly * block_singly; uint64_t max_direct = block_direct; uint64_t max_singly = max_direct + block_singly; uint64_t max_doubly = max_singly + block_doubly; uint64_t logical_blocks = divup(new_size, (uint64_t) filesystem->block_size); uint64_t actual_blocks = logical_blocks; if ( max_direct <= logical_blocks ) actual_blocks += divup(logical_blocks - max_direct, ENTRIES); if ( max_singly <= logical_blocks ) actual_blocks += divup(logical_blocks - max_singly, ENTRIES * ENTRIES); if ( max_doubly <= logical_blocks ) actual_blocks += divup(logical_blocks - max_doubly, ENTRIES * ENTRIES * ENTRIES); BeginWrite(); data->i_blocks = (actual_blocks * filesystem->block_size) / 512; if ( FAT_S_ISREG(data->i_mode) && largefile ) data->i_dir_acl = upper; FinishWrite(); Modified(); } Block* Inode::GetBlockFromTable(Block* table, uint32_t index) { if ( uint32_t block_id = ((uint32_t*) table->block_data)[index] ) return filesystem->device->GetBlock(block_id); // TODO: If in read only mode, then perhaps return a zero block here. if ( !filesystem->device->write ) return NULL; uint32_t group_id = (inode_id - 1) / filesystem->sb->s_inodes_per_group; assert(group_id < filesystem->num_groups); BlockGroup* block_group = filesystem->GetBlockGroup(group_id); uint32_t block_id = filesystem->AllocateBlock(block_group); block_group->Unref(); if ( block_id ) { Block* block = filesystem->device->GetBlockZeroed(block_id); table->BeginWrite(); ((uint32_t*) table->block_data)[index] = block_id; table->FinishWrite(); return block; } return NULL; } Block* Inode::GetBlock(uint64_t offset) { const uint64_t ENTRIES = filesystem->block_size / sizeof(uint32_t); uint64_t block_direct = sizeof(data->i_block) / sizeof(uint32_t) - 3; uint64_t block_singly = ENTRIES; uint64_t block_doubly = block_singly * block_singly; uint64_t block_triply = block_doubly * block_singly; uint64_t max_direct = block_direct; uint64_t max_singly = max_direct + block_singly; uint64_t max_doubly = max_singly + block_doubly; uint64_t max_triply = max_doubly + block_triply; uint32_t index; Block* table = data_block; table->Refer(); Block* block; uint32_t inode_offset = (uintptr_t) data - (uintptr_t) data_block->block_data; uint32_t table_offset = offsetof(struct ext_inode, i_block); uint32_t inode_block_table_offset = (inode_offset + table_offset) / sizeof(uint32_t); // TODO: It would seem that somebody needs a lesson in induction. :-) if ( offset < max_direct ) { offset -= 0; offset += inode_block_table_offset * 1; read_direct: index = offset; offset %= 1; block = GetBlockFromTable(table, index); table->Unref(); if ( !block ) return NULL; return block; } else if ( offset < max_singly ) { offset -= max_direct; offset += (inode_block_table_offset + 12) * ENTRIES; read_singly: index = offset / ENTRIES; offset = offset % ENTRIES; block = GetBlockFromTable(table, index); table->Unref(); if ( !block ) return NULL; table = block; goto read_direct; } else if ( offset < max_doubly ) { offset -= max_singly; offset += (inode_block_table_offset + 13) * ENTRIES * ENTRIES; read_doubly: index = offset / (ENTRIES * ENTRIES); offset = offset % (ENTRIES * ENTRIES); block = GetBlockFromTable(table, index); table->Unref(); if ( !block ) return NULL; table = block; goto read_singly; } else if ( offset < max_triply ) { offset -= max_doubly; offset += (inode_block_table_offset + 14) * ENTRIES * ENTRIES * ENTRIES; /*read_triply:*/ index = offset / (ENTRIES * ENTRIES * ENTRIES); offset = offset % (ENTRIES * ENTRIES * ENTRIES); block = GetBlockFromTable(table, index); table->Unref(); if ( !block ) return NULL; table = block; goto read_doubly; } table->Unref(); return NULL; } Block* Inode::GetClusterSector(uint32_t cluster, uint8_t sector) { uint32_t block_id; if ( inode_id == filesystem->root_inode_id && filesystem->fat_type != 32 ) block_id = filesystem->root_sector + cluster; else block_id = filesystem->data_sector + (cluster - 2) * filesystem->bpb->sectors_per_cluster + sector; return filesystem->device->GetBlock(block_id); } // TODO: Yes. Do review this function carefully. bool Inode::Iterate(Block** block_ptr, uint32_t* cluster_ptr, uint8_t* sector_ptr, uint16_t* offset_ptr) { // TODO: Restructure to cache this. if ( *block_ptr ) { (*block_ptr)->Unref(); *block_ptr = NULL; } if ( *offset_ptr == filesystem->bytes_per_sector ) { *offset_ptr = 0; if ( inode_id == filesystem->root_inode_id && filesystem->fat_type != 32 ) { // TODO: This kinda assumes the root directory is sector sized. uint32_t end = filesystem->root_dirent_count * sizeof(struct fat_dirent); uint32_t end_lba = end / filesystem->bytes_per_sector; if ( end_lba <= *cluster_ptr ) return errno = 0, false; (*cluster_ptr)++; } else { (*sector_ptr)++; if ( *sector_ptr == filesystem->bpb->sectors_per_cluster ) { *sector_ptr = 0; *cluster_ptr = filesystem->ReadFAT(*cluster_ptr); } } } if ( inode_id != filesystem->root_inode_id || filesystem->fat_type == 32 ) { if ( *cluster_ptr < 2 ) return errno = EIO, false; if ( filesystem->eof_cluster <= *cluster_ptr ) return errno = 0, false; if ( filesystem->eio_cluster <= *cluster_ptr ) return errno = EIO, false; } if ( !(*block_ptr = GetClusterSector(*cluster_ptr, *sector_ptr)) ) return false; return errno = 0, true; } uint32_t Inode::SeekCluster(uint32_t cluster_id) { // TODO: Cache. uint32_t cluster = first_cluster; while ( cluster_id-- ) { cluster = filesystem->ReadFAT(cluster); if ( cluster < 2 ) return errno = EIO, filesystem->eio_cluster; if ( filesystem->eof_cluster <= cluster ) return errno = EIO, filesystem->eio_cluster; } return cluster; } bool Inode::FreeIndirect(uint64_t from, uint64_t offset, uint32_t block_id, int indirection, uint64_t entry_span) { assert(filesystem->device->write); const uint64_t ENTRIES = filesystem->block_size / sizeof(uint32_t); Block* block = filesystem->device->GetBlock(block_id); uint32_t* table = (uint32_t*) block->block_data; bool any_children = false; bool begun_writing = false; for ( uint64_t i = 0; i < ENTRIES; i++ ) { if ( !table[i] ) continue; uint64_t entry_offset = offset + entry_span * i; if ( entry_offset < from || (indirection && FreeIndirect(from, entry_offset, table[i], indirection-1, entry_span / ENTRIES)) ) { any_children = true; continue; } filesystem->FreeBlock(table[i]); if ( !begun_writing ) { block->BeginWrite(); begun_writing = true; } table[i] = 0; } if ( begun_writing ) block->FinishWrite(); return any_children; } bool Inode::Truncate(uint64_t new_size_64) { assert(filesystem->device->write); assert(S_ISREG(Mode())); uint32_t new_size = (uint32_t) new_size_64; if ( new_size_64 != new_size ) return errno = E2BIG, false; uint32_t old_size = dirent->size; uint32_t pos = old_size < new_size ? old_size : new_size; uint32_t bytes_per_sector = filesystem->bytes_per_sector; uint32_t cluster_id = pos / filesystem->cluster_size; uint32_t cluster_offset = pos % filesystem->cluster_size; if ( cluster_id && !cluster_offset ) { cluster_id--; cluster_offset = filesystem->cluster_size; } uint32_t cluster = SeekCluster(cluster_id); if ( cluster_id == filesystem->eio_cluster ) return errno = EIO, false; if ( old_size < new_size ) { while ( old_size < new_size ) { if ( cluster_offset == filesystem->cluster_size ) { // TODO: Zero the new sectors since the old contents may leak // if we were to implement mmap. uint32_t next_cluster = filesystem->AllocateCluster(); if ( !next_cluster ) return false; filesystem->WriteFAT(next_cluster, filesystem->eof_cluster); filesystem->WriteFAT(cluster, next_cluster); cluster_offset = 0; cluster = next_cluster; } uint8_t sector = cluster_offset / bytes_per_sector; uint16_t sector_offset = cluster_offset % bytes_per_sector; Block* block = GetClusterSector(cluster, sector); if ( !block ) return false; size_t left = new_size - old_size; size_t available = bytes_per_sector - sector_offset; size_t amount = left < available ? left : available; block->BeginWrite(); memset(block->block_data + sector_offset, 0, amount); block->FinishWrite(); old_size += amount; cluster_offset += amount; block->Unref(); } } else if ( new_size < old_size ) { uint32_t marker = filesystem->eof_cluster; while ( true ) { uint32_t next_cluster = filesystem->ReadFAT(cluster); if ( next_cluster < 2 || filesystem->eio_cluster == next_cluster ) return errno = EIO, false; if ( next_cluster != marker ) { filesystem->WriteFAT(cluster, marker); filesystem->FreeCluster(next_cluster); } if ( filesystem->eof_cluster <= next_cluster ) break; cluster = next_cluster; cluster_id++; marker = 0; } } else return true; data_block->BeginWrite(); dirent->size = new_size; data_block->FinishWrite(); return true; } Inode* Inode::Open(const char* elem, int flags, mode_t mode) { if ( !S_ISDIR(Mode()) ) return errno = ENOTDIR, (Inode*) NULL; size_t elem_length = strlen(elem); if ( elem_length == 0 ) return errno = ENOENT, (Inode*) NULL; if ( inode_id == filesystem->root_inode_id ) { if ( !strcmp(elem, ".") || !strcmp(elem, "..") ) { if ( (flags & O_CREAT) && (flags & O_EXCL) ) return errno = EEXIST, (Inode*) NULL; if ( flags & O_WRITE && !filesystem->device->write ) return errno = EROFS, (Inode*) NULL; Refer(); return this; // TODO: Reopen the same inode. } } uint32_t cluster = first_cluster; uint8_t sector = 0; uint16_t offset = 0; Block* block = NULL; bool found_free = false; uint32_t free_cluster = 0; uint8_t free_sector = 0; uint16_t free_offset = 0; uint32_t last_cluster = 0; while ( Iterate(&block, &cluster, §or, &offset) ) { last_cluster = cluster; uint8_t* block_data = block->block_data + offset; struct fat_dirent* entry = (struct fat_dirent*) block_data; if ( !found_free && (!entry->name[0] || (unsigned char) entry->name[0] == 0xE5) ) { found_free = true; free_cluster = cluster; free_sector = sector; free_offset = offset; } if ( !entry->name[0] ) break; char name[8 + 1 + 3 + 1]; if ( (unsigned char) entry->name[0] != 0xE5 && !(entry->attributes & FAT_ATTRIBUTE_VOLUME_ID) && (decode_8_3(entry->name, name), !strcmp(elem, name)) ) { // TODO: Opening .. ends up with EIO failures. if ( (flags & O_CREAT) && (flags & O_EXCL) ) return block->Unref(), errno = EEXIST, (Inode*) NULL; if ( (flags & O_DIRECTORY) && !(entry->attributes & FAT_ATTRIBUTE_DIRECTORY) ) return block->Unref(), errno = ENOTDIR, (Inode*) NULL; uint32_t inode_id = entry->cluster_low | entry->cluster_high << 16; // TODO: If the inode is a directory, keep a reference open to this // parent directory so it can find the .. path back and keep track // of where the directory records with metadata is. Inode* inode = filesystem->GetInode(inode_id, block, entry); block->Unref(); if ( !inode ) return (Inode*) NULL; if ( flags & O_WRITE && !filesystem->device->write ) return inode->Unref(), errno = EROFS, (Inode*) NULL; if ( S_ISREG(inode->Mode()) && (flags & O_WRITE) && (flags & O_TRUNC) && !inode->Truncate(0) ) return (Inode*) NULL; return inode; } offset += sizeof(struct fat_dirent); } if ( block ) block->Unref(); if ( errno ) return (Inode*) NULL; if ( flags & O_CREAT ) { if ( !filesystem->device->write ) return errno = EROFS, (Inode*) NULL; // TODO: Protect against . and .. if ( !is_8_3(elem) ) return errno = ENAMETOOLONG, (Inode*) NULL; // TODO: Root directory support. if ( inode_id == filesystem->root_inode_id && filesystem->fat_type != 32 ) return errno = ENOTSUP, (Inode*) NULL; if ( !found_free ) { uint32_t new_cluster = filesystem->AllocateCluster(); if ( !new_cluster ) return (Inode*) NULL; for ( size_t i = 0; i < filesystem->bpb->sectors_per_cluster; i++ ) { Block* block = GetClusterSector(new_cluster, i); if ( !block ) { filesystem->FreeCluster(new_cluster); return (Inode*) NULL; } block->BeginWrite(); memset(block->block_data, 0, filesystem->bytes_per_sector); block->FinishWrite(); block->Unref(); } filesystem->WriteFAT(last_cluster, new_cluster); found_free = true; free_cluster = new_cluster; free_sector = 0; free_offset = 0; } // TODO: Avoid shadowing with the class member. uint32_t inode_id = filesystem->AllocateCluster(); // TODO: Actually zero this cluster entirely. if ( !inode_id ) return (Inode*) NULL; mode_t attributes = mode & 0200 ? 0 : FAT_ATTRIBUTE_READ_ONLY; if ( S_ISDIR(mode) ) { attributes |= FAT_ATTRIBUTE_DIRECTORY; Block* block = GetClusterSector(inode_id, 0); if ( !block ) return filesystem->FreeCluster(inode_id), (Inode*) NULL; block->BeginWrite(); memset(block->block_data, 0, filesystem->bytes_per_sector); struct fat_dirent* dirent = (struct fat_dirent*) block->block_data; // TODO: Mirror modified times in here. memcpy(dirent->name, ".", 1); dirent->attributes = attributes; dirent->cluster_high = htole16(inode_id >> 16); dirent->cluster_low = htole16(inode_id & 0xFFFF); dirent++; memcpy(dirent->name, "..", 2); dirent->attributes = FAT_ATTRIBUTE_DIRECTORY; if ( this->inode_id == filesystem->root_inode_id ) { dirent->cluster_high = htole16(0); dirent->cluster_low = htole16(0); } else { dirent->cluster_high = htole16(this->inode_id >> 16); dirent->cluster_low = htole16(this->inode_id & 0xFFFF); } block->FinishWrite(); block->Unref(); } Block* block = GetClusterSector(free_cluster, free_sector); if ( !block ) return filesystem->FreeCluster(inode_id), (Inode*) NULL; filesystem->WriteFAT(inode_id, filesystem->eof_cluster); struct timespec now; clock_gettime(CLOCK_REALTIME, &now); block->BeginWrite(); struct fat_dirent* dirent = (struct fat_dirent*) (block->block_data + free_offset); encode_8_3(elem, dirent->name); dirent->attributes = attributes; dirent->creation_tenths = timespec_to_fat_tenths(&now); dirent->creation_time = htole16(timespec_to_fat_time(&now)); dirent->creation_date = htole16(timespec_to_fat_date(&now)); dirent->access_date = dirent->creation_date; dirent->cluster_high = htole16(inode_id >> 16); dirent->modified_time = dirent->creation_time; dirent->modified_date = dirent->creation_date; dirent->cluster_low = htole16(inode_id & 0xFFFF); dirent->size = htole16(0); block->FinishWrite(); Inode* inode = filesystem->GetInode(inode_id, block, dirent); block->Unref(); return inode; } return errno = ENOENT, (Inode*) NULL; } bool Inode::Link(const char* elem, Inode* dest, bool directories) { if ( !FAT_S_ISDIR(Mode()) ) return errno = ENOTDIR, false; if ( directories && !FAT_S_ISDIR(dest->Mode()) ) return errno = ENOTDIR, false; if ( !directories && FAT_S_ISDIR(dest->Mode()) ) return errno = EISDIR, false; // Search for a hole in which we can store the new directory entry and stop // if we meet an existing link with the requested name. size_t elem_length = strlen(elem); if ( elem_length == 0 ) return errno = ENOENT, false; size_t new_entry_size = roundup(sizeof(struct ext_dirent) + elem_length, (size_t) 4); uint64_t filesize = Size(); uint64_t offset = 0; Block* block = NULL; uint64_t block_id = 0; bool found_hole = false; bool splitting = false; uint64_t hole_block_id = 0; uint64_t hole_block_offset = 0; while ( offset < filesize ) { uint64_t entry_block_id = offset / filesystem->block_size; uint64_t entry_block_offset = offset % filesystem->block_size; if ( block && block_id != entry_block_id ) block->Unref(), block = NULL; if ( !block && !(block = GetBlock(block_id = entry_block_id)) ) return NULL; const uint8_t* block_data = block->block_data + entry_block_offset; const struct ext_dirent* entry = (const struct ext_dirent*) block_data; if ( entry->name_len == elem_length && memcmp(elem, entry->name, elem_length) == 0 ) { block->Unref(); return errno = EEXIST, false; } if ( !found_hole ) { size_t entry_size = roundup(sizeof(struct ext_dirent) + entry->name_len, (size_t) 4); if ( (!entry->inode || !entry->name[0]) && new_entry_size <= entry->reclen ) { hole_block_id = entry_block_id; hole_block_offset = entry_block_offset; new_entry_size = entry->reclen; found_hole = true; } else if ( new_entry_size <= entry->reclen - entry_size ) { hole_block_id = entry_block_id; hole_block_offset = entry_block_offset; new_entry_size = entry->reclen - entry_size; splitting = true; found_hole = true; } } offset += entry->reclen; } if ( !filesystem->device->write ) return errno = EROFS, false; if ( UINT16_MAX <= dest->data->i_links_count ) return errno = EMLINK, false; if ( 255 < elem_length ) return errno = ENAMETOOLONG, false; // We'll append another block if we failed to find a suitable hole. if ( !found_hole ) { hole_block_id = filesize / filesystem->block_size; hole_block_offset = filesize % filesystem->block_size; new_entry_size = filesystem->block_size; } if ( block && block_id != hole_block_id ) block->Unref(), block = NULL; if ( !block && !(block = GetBlock(block_id = hole_block_id)) ) return NULL; Modified(); block->BeginWrite(); uint8_t* block_data = block->block_data + hole_block_offset; struct ext_dirent* entry = (struct ext_dirent*) block_data; // If we found a directory entry with room at the end, split it! if ( splitting ) { entry->reclen = roundup(sizeof(struct ext_dirent) + entry->name_len, (size_t) 4); assert(entry->reclen); block_data += entry->reclen; entry = (struct ext_dirent*) block_data; } // Write the new directory entry. entry->inode = dest->inode_id; entry->reclen = new_entry_size; entry->name_len = elem_length; if ( filesystem->sb->s_feature_incompat & FAT_FEATURE_INCOMPAT_FILETYPE ) entry->file_type = FAT_FT_OF_MODE(dest->Mode()); else entry->file_type = FAT_FT_UNKNOWN; strncpy(entry->name, elem, new_entry_size - sizeof(struct ext_dirent)); block->FinishWrite(); block->Unref(); dest->BeginWrite(); dest->data->i_links_count++; dest->FinishWrite(); if ( !found_hole ) SetSize(Size() + filesystem->block_size); return true; } Inode* Inode::UnlinkKeep(const char* elem, bool directories, bool force) { if ( !FAT_S_ISDIR(Mode()) ) return errno = ENOTDIR, (Inode*) NULL; size_t elem_length = strlen(elem); if ( elem_length == 0 ) return errno = ENOENT, (Inode*) NULL; uint32_t block_size = filesystem->block_size; uint64_t filesize = Size(); uint64_t num_blocks = divup(filesize, (uint64_t) block_size); uint64_t offset = 0; Block* block = NULL; uint64_t block_id = 0; struct ext_dirent* last_entry = NULL; while ( offset < filesize ) { uint64_t entry_block_id = offset / block_size; uint64_t entry_block_offset = offset % block_size; if ( block && block_id != entry_block_id ) last_entry = NULL, block->Unref(), block = NULL; if ( !block && !(block = GetBlock(block_id = entry_block_id)) ) return NULL; uint8_t* block_data = block->block_data + entry_block_offset; struct ext_dirent* entry = (struct ext_dirent*) block_data; if ( entry->inode && entry->name_len == elem_length && memcmp(elem, entry->name, elem_length) == 0 ) { Inode* inode = filesystem->GetInode(entry->inode); if ( !force && directories && !FAT_S_ISDIR(inode->Mode()) ) { inode->Unref(); block->Unref(); return errno = ENOTDIR, (Inode*) NULL; } if ( !force && directories && !inode->IsEmptyDirectory() ) { inode->Unref(); block->Unref(); return errno = ENOTEMPTY, (Inode*) NULL; } if ( !force && !directories && FAT_S_ISDIR(inode->Mode()) ) { inode->Unref(); block->Unref(); return errno = EISDIR, (Inode*) NULL; } if ( !filesystem->device->write ) { inode->Unref(); block->Unref(); return errno = EROFS, (Inode*) NULL; } Modified(); inode->BeginWrite(); inode->data->i_links_count--; inode->FinishWrite(); block->BeginWrite(); entry->inode = 0; entry->name_len = 0; entry->file_type = 0; // Merge the current entry with the previous if any. if ( last_entry ) { last_entry->reclen += entry->reclen; memset(entry, 0, entry->reclen); entry = last_entry; } strncpy(entry->name + entry->name_len, "", entry->reclen - sizeof(struct ext_dirent) - entry->name_len); // If the entire block is empty, we'll need to remove it. if ( !entry->name[0] && entry->reclen == block_size ) { // If this is not the last block, we'll make it. This is faster // than shifting the entire directory a single block. We don't // actually copy this block to the end, since we'll truncate it // regardless. if ( entry_block_id + 1 != num_blocks ) { Block* last_block = GetBlock(num_blocks-1); if ( last_block ) { memcpy(block->block_data, last_block->block_data, block_size); last_block->Unref(); Truncate(filesize - block_size); } } else { Truncate(filesize - block_size); } } block->FinishWrite(); block->Unref(); return inode; } offset += entry->reclen; last_entry = entry; } if ( block ) block->Unref(); return errno = ENOENT, (Inode*) NULL; } bool Inode::Unlink(const char* elem, bool directories, bool force) { Inode* result = UnlinkKeep(elem, directories, force); if ( !result ) return false; result->Unref(); return true; } ssize_t Inode::ReadAt(uint8_t* buf, size_t s_count, off_t o_offset) { if ( !FAT_S_ISREG(Mode()) ) return errno = EISDIR, -1; if ( o_offset < 0 ) return errno = EINVAL, -1; if ( SSIZE_MAX < s_count ) s_count = SSIZE_MAX; // TODO: Downgrade to 32-bit. uint64_t sofar = 0; uint64_t count = (uint64_t) s_count; uint64_t offset = (uint64_t) o_offset; uint32_t file_size = Size(); if ( file_size <= offset ) return 0; if ( file_size - offset < count ) count = file_size - offset; if ( !count ) return 0; uint32_t cluster_id = offset / filesystem->cluster_size; uint32_t cluster_offset = offset % filesystem->cluster_size; uint32_t cluster = SeekCluster(cluster_id); if ( filesystem->eio_cluster <= cluster ) return -1; while ( sofar < count ) { if ( filesystem->cluster_size <= cluster_offset ) { cluster = filesystem->ReadFAT(cluster); // TODO: Better checks. if ( filesystem->eio_cluster <= cluster ) return sofar ? sofar : (errno = EIO, -1); cluster_offset = 0; cluster_id++; } uint8_t sector = cluster_offset / filesystem->bytes_per_sector; uint16_t block_offset = cluster_offset % filesystem->bytes_per_sector; uint32_t block_left = filesystem->bytes_per_sector - block_offset; Block* block = GetClusterSector(cluster, sector); if ( !block ) return sofar ? sofar : -1; size_t amount = count - sofar < block_left ? count - sofar : block_left; memcpy(buf + sofar, block->block_data + block_offset, amount); sofar += amount; cluster_offset += amount; block->Unref(); } return (ssize_t) sofar; } ssize_t Inode::WriteAt(const uint8_t* buf, size_t s_count, off_t o_offset) { if ( !FAT_S_ISREG(Mode()) ) return errno = EISDIR, -1; if ( o_offset < 0 ) return errno = EINVAL, -1; if ( !filesystem->device->write ) return errno = EROFS, -1; if ( SSIZE_MAX < s_count ) s_count = SSIZE_MAX; // TODO: Update modified time. //Modified(); // TODO: Downgrade to 32-bit. uint64_t sofar = 0; uint64_t count = (uint64_t) s_count; uint64_t offset = (uint64_t) o_offset; uint32_t file_size = Size(); uint64_t end_at = offset + count; if ( offset < end_at ) /* TODO: Overflow! off_t overflow? */{}; if ( file_size < end_at && !Truncate(end_at) ) return -1; uint32_t cluster_id = offset / filesystem->cluster_size; uint32_t cluster_offset = offset % filesystem->cluster_size; uint32_t cluster = SeekCluster(cluster_id); if ( filesystem->eio_cluster <= cluster ) return -1; while ( sofar < count ) { if ( filesystem->cluster_size <= cluster_offset ) { cluster = filesystem->ReadFAT(cluster); // TODO: Better checks. if ( filesystem->eio_cluster <= cluster ) return sofar ? sofar : (errno = EIO, -1); cluster_offset = 0; cluster_id++; } uint8_t sector = cluster_offset / filesystem->bytes_per_sector; uint16_t block_offset = cluster_offset % filesystem->bytes_per_sector; uint32_t block_left = filesystem->bytes_per_sector - block_offset; Block* block = GetClusterSector(cluster, sector); if ( !block ) return sofar ? sofar : -1; size_t amount = count - sofar < block_left ? count - sofar : block_left; block->BeginWrite(); memcpy(block->block_data + block_offset, buf + sofar, amount); block->FinishWrite(); sofar += amount; cluster_offset += amount; block->Unref(); } return (ssize_t) sofar; } bool Inode::UnembedInInode() { assert(data->i_blocks == 0 && 0 < data->i_size && data->i_size <= 60); unsigned char* block_data = (unsigned char*) &data->i_block[0]; size_t content_size = Size(); unsigned char content[60]; memcpy(content, block_data, content_size); data_block->BeginWrite(); memset(block_data, 0, 60); data->i_size = 0; data_block->FinishWrite(); if ( WriteAt(content, content_size, 0) != (ssize_t) content_size ) { Truncate(0); data_block->BeginWrite(); memcpy(block_data, content, content_size); data->i_size = content_size; data->i_blocks = 0; data_block->FinishWrite(); return false; } return true; } bool Inode::Rename(Inode* olddir, const char* oldname, const char* newname) { if ( !strcmp(oldname, ".") || !strcmp(oldname, "..") || !strcmp(newname, ".") || !strcmp(newname, "..") ) return errno = EPERM, false; Inode* src_inode = olddir->Open(oldname, O_RDONLY, 0); if ( !src_inode ) return false; if ( Inode* dst_inode = Open(newname, O_RDONLY, 0) ) { bool same_inode = src_inode->inode_id == dst_inode->inode_id; dst_inode->Unref(); if ( same_inode ) return src_inode->Unref(), true; } // TODO: Prove that this cannot fail and handle such a situation. if ( FAT_S_ISDIR(src_inode->Mode()) ) { if ( !Unlink(newname, true) && errno != ENOENT ) return src_inode->Unref(), false; Link(newname, src_inode, true); olddir->Unlink(oldname, true, true); if ( olddir != this ) { src_inode->Unlink("..", true, true); src_inode->Link("..", this, true); } } else { if ( !Unlink(newname, false) && errno != ENOENT ) return src_inode->Unref(), false; Link(newname, src_inode, false); olddir->Unlink(oldname, false); } src_inode->Unref(); return true; } bool Inode::Symlink(const char* elem, const char* dest) { if ( !filesystem->device->write ) return errno = EROFS, false; // TODO: Preferred block group! uint32_t result_inode_id = filesystem->AllocateInode(); if ( !result_inode_id ) return NULL; Inode* result = filesystem->GetInode(result_inode_id); if ( !result ) return filesystem->FreeInode(result_inode_id), false; struct timespec now; clock_gettime(CLOCK_REALTIME, &now); result->BeginWrite(); memset(result->data, 0, sizeof(*result->data)); result->data->i_atime = now.tv_sec; result->data->i_ctime = now.tv_sec; result->data->i_mtime = now.tv_sec; // TODO: Set all the other inode properties! result->FinishWrite(); result->SetMode((0777 & S_SETABLE) | FAT_S_IFLNK); result->SetUserId(request_uid); result->SetGroupId(request_gid); size_t dest_length = strlen(dest); if ( SSIZE_MAX < dest_length ) return errno = EFBIG, -1; if ( result->WriteAt((const uint8_t*) dest, dest_length, 0) < (ssize_t) dest_length ) return result->Unref(), false; if ( !Link(elem, result, false) ) return result->Truncate(0), result->Unref(), false; result->Unref(); return true; } Inode* Inode::CreateDirectory(const char* path, mode_t mode) { return Open(path, O_CREAT | O_EXCL, mode | S_IFDIR); } bool Inode::RemoveDirectory(const char* path) { Inode* result = UnlinkKeep(path, true); if ( !result ) return false; result->Unlink("..", true, true); result->Unlink(".", true, true); result->Truncate(0); // Decrease the directory count statistics. uint32_t group_id = (result->inode_id - 1) / filesystem->sb->s_inodes_per_group; assert(group_id < filesystem->num_groups); BlockGroup* block_group = filesystem->GetBlockGroup(group_id); if ( block_group ) { block_group->BeginWrite(); block_group->data->bg_used_dirs_count--; block_group->FinishWrite(); block_group->Unref(); } result->Unref(); return true; } bool Inode::IsEmptyDirectory() { if ( !FAT_S_ISDIR(Mode()) ) return errno = ENOTDIR, false; uint32_t block_size = filesystem->block_size; uint64_t filesize = Size(); uint64_t offset = 0; Block* block = NULL; uint64_t block_id = 0; while ( offset < filesize ) { uint64_t entry_block_id = offset / block_size; uint64_t entry_block_offset = offset % block_size; if ( block && block_id != entry_block_id ) block->Unref(), block = NULL; if ( !block && !(block = GetBlock(block_id = entry_block_id)) ) return false; uint8_t* block_data = block->block_data + entry_block_offset; struct ext_dirent* entry = (struct ext_dirent*) block_data; if ( entry->inode && !((entry->name_len == 1 && entry->name[0] == '.') || (entry->name_len == 2 && entry->name[0] == '.' && entry->name[1] == '.' )) ) { block->Unref(); return false; } offset += entry->reclen; } if ( block ) block->Unref(); return true; } void Inode::Delete() { assert(!data->i_links_count); assert(!reference_count); assert(!remote_reference_count); Truncate(0); uint32_t deleted_inode_id = inode_id; struct timespec now; clock_gettime(CLOCK_REALTIME, &now); BeginWrite(); memset(data, 0, sizeof(*data)); data->i_dtime = now.tv_sec; FinishWrite(); filesystem->FreeInode(deleted_inode_id); } void Inode::Refer() { reference_count++; } void Inode::Unref() { assert(0 < reference_count); reference_count--; if ( !reference_count && !remote_reference_count ) { // TODO: Can data be NULL here? Should the other drives do this? if ( data && !data->i_links_count ) Delete(); delete this; } } void Inode::RemoteRefer() { remote_reference_count++; } void Inode::RemoteUnref() { assert(0 < remote_reference_count); remote_reference_count--; if ( !reference_count && !remote_reference_count ) { // TODO: Check if deleted. //Delete(); delete this; } } void Inode::Modified() { struct timespec now; clock_gettime(CLOCK_REALTIME, &now); BeginWrite(); data->i_mtime = now.tv_sec; FinishWrite(); } void Inode::BeginWrite() { data_block->BeginWrite(); } void Inode::FinishWrite() { struct timespec now; clock_gettime(CLOCK_REALTIME, &now); data->i_ctime = now.tv_sec; if ( !dirty ) { dirty = true; prev_dirty = NULL; next_dirty = filesystem->dirty_inode; if ( next_dirty ) next_dirty->prev_dirty = this; filesystem->dirty_inode = this; } data_block->FinishWrite(); Use(); } void Inode::Sync() { if ( !dirty ) return; data_block->Sync(); // TODO: The inode contents needs to be sync'd as well! (prev_dirty ? prev_dirty->next_dirty : filesystem->dirty_inode) = next_dirty; if ( next_dirty ) next_dirty->prev_dirty = prev_dirty; prev_dirty = NULL; next_dirty = NULL; dirty = false; } void Inode::Use() { data_block->Use(); Unlink(); Prelink(); } void Inode::Unlink() { (prev_inode ? prev_inode->next_inode : filesystem->mru_inode) = next_inode; (next_inode ? next_inode->prev_inode : filesystem->lru_inode) = prev_inode; size_t bin = inode_id % INODE_HASH_LENGTH; (prev_hashed ? prev_hashed->next_hashed : filesystem->hash_inodes[bin]) = next_hashed; if ( next_hashed ) next_hashed->prev_hashed = prev_hashed; } void Inode::Prelink() { prev_inode = NULL; next_inode = filesystem->mru_inode; if ( filesystem->mru_inode ) filesystem->mru_inode->prev_inode = this; filesystem->mru_inode = this; if ( !filesystem->lru_inode ) filesystem->lru_inode = this; size_t bin = inode_id % INODE_HASH_LENGTH; prev_hashed = NULL; next_hashed = filesystem->hash_inodes[bin]; filesystem->hash_inodes[bin] = this; if ( next_hashed ) next_hashed->prev_hashed = this; }